hloop.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #include "hthread.h"
  11. #define HLOOP_PAUSE_TIME 10 // ms
  12. #define HLOOP_MAX_BLOCK_TIME 100 // ms
  13. #define HLOOP_STAT_TIMEOUT 60000 // ms
  14. #define IO_ARRAY_INIT_SIZE 1024
  15. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  16. #define SOCKPAIR_WRITE_INDEX 0
  17. #define SOCKPAIR_READ_INDEX 1
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. // NOTE: Just mark it as destroy and remove from list.
  35. // Real deletion occurs after hloop_process_pendings.
  36. __hidle_del(idle);
  37. }
  38. EVENT_PENDING(idle);
  39. ++nidles;
  40. }
  41. return nidles;
  42. }
  43. static int hloop_process_timers(hloop_t* loop) {
  44. int ntimers = 0;
  45. htimer_t* timer = NULL;
  46. uint64_t now_hrtime = hloop_now_hrtime(loop);
  47. while (loop->timers.root) {
  48. // NOTE: root of minheap has min timeout.
  49. timer = TIMER_ENTRY(loop->timers.root);
  50. if (timer->next_timeout > now_hrtime) {
  51. break;
  52. }
  53. if (timer->repeat != INFINITE) {
  54. --timer->repeat;
  55. }
  56. if (timer->repeat == 0) {
  57. // NOTE: Just mark it as destroy and remove from heap.
  58. // Real deletion occurs after hloop_process_pendings.
  59. __htimer_del(timer);
  60. }
  61. else {
  62. // NOTE: calc next timeout, then re-insert heap.
  63. heap_dequeue(&loop->timers);
  64. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  65. while (timer->next_timeout <= now_hrtime) {
  66. timer->next_timeout += (uint64_t)((htimeout_t*)timer)->timeout * 1000;
  67. }
  68. }
  69. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  70. hperiod_t* period = (hperiod_t*)timer;
  71. timer->next_timeout = (uint64_t)cron_next_timeout(period->minute, period->hour, period->day,
  72. period->week, period->month) * 1000000;
  73. }
  74. heap_insert(&loop->timers, &timer->node);
  75. }
  76. EVENT_PENDING(timer);
  77. ++ntimers;
  78. }
  79. return ntimers;
  80. }
  81. static int hloop_process_ios(hloop_t* loop, int timeout) {
  82. // That is to call IO multiplexing function such as select, poll, epoll, etc.
  83. int nevents = iowatcher_poll_events(loop, timeout);
  84. if (nevents < 0) {
  85. hlogd("poll_events error=%d", -nevents);
  86. }
  87. return nevents < 0 ? 0 : nevents;
  88. }
  89. static int hloop_process_pendings(hloop_t* loop) {
  90. if (loop->npendings == 0) return 0;
  91. hevent_t* cur = NULL;
  92. hevent_t* next = NULL;
  93. int ncbs = 0;
  94. // NOTE: invoke event callback from high to low sorted by priority.
  95. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  96. cur = loop->pendings[i];
  97. while (cur) {
  98. next = cur->pending_next;
  99. if (cur->pending) {
  100. if (cur->active && cur->cb) {
  101. cur->cb(cur);
  102. ++ncbs;
  103. }
  104. cur->pending = 0;
  105. // NOTE: Now we can safely delete event marked as destroy.
  106. if (cur->destroy) {
  107. EVENT_DEL(cur);
  108. }
  109. }
  110. cur = next;
  111. }
  112. loop->pendings[i] = NULL;
  113. }
  114. loop->npendings = 0;
  115. return ncbs;
  116. }
  117. // hloop_process_ios -> hloop_process_timers -> hloop_process_idles -> hloop_process_pendings
  118. static int hloop_process_events(hloop_t* loop) {
  119. // ios -> timers -> idles
  120. int nios, ntimers, nidles;
  121. nios = ntimers = nidles = 0;
  122. // calc blocktime
  123. int32_t blocktime = HLOOP_MAX_BLOCK_TIME;
  124. if (loop->timers.root) {
  125. hloop_update_time(loop);
  126. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  127. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  128. if (blocktime_us <= 0) goto process_timers;
  129. blocktime = blocktime_us / 1000;
  130. ++blocktime;
  131. blocktime = MIN(blocktime, HLOOP_MAX_BLOCK_TIME);
  132. }
  133. if (loop->nios) {
  134. nios = hloop_process_ios(loop, blocktime);
  135. } else {
  136. hv_msleep(blocktime);
  137. }
  138. hloop_update_time(loop);
  139. // wakeup by hloop_stop
  140. if (loop->status == HLOOP_STATUS_STOP) {
  141. return 0;
  142. }
  143. process_timers:
  144. if (loop->ntimers) {
  145. ntimers = hloop_process_timers(loop);
  146. }
  147. int npendings = loop->npendings;
  148. if (npendings == 0) {
  149. if (loop->nidles) {
  150. nidles= hloop_process_idles(loop);
  151. }
  152. }
  153. int ncbs = hloop_process_pendings(loop);
  154. // printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  155. // blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  156. // loop->nactives, npendings, ncbs);
  157. return ncbs;
  158. }
  159. static void hloop_stat_timer_cb(htimer_t* timer) {
  160. hloop_t* loop = timer->loop;
  161. // hlog_set_level(LOG_LEVEL_DEBUG);
  162. hlogd("[loop] pid=%ld tid=%ld uptime=%lluus cnt=%llu nactives=%u nios=%u ntimers=%u nidles=%u",
  163. loop->pid, loop->tid, loop->cur_hrtime - loop->start_hrtime, loop->loop_cnt,
  164. loop->nactives, loop->nios, loop->ntimers, loop->nidles);
  165. }
  166. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  167. hloop_t* loop = io->loop;
  168. hevent_t* pev = NULL;
  169. hevent_t ev;
  170. for (int i = 0; i < readbytes; ++i) {
  171. hmutex_lock(&loop->custom_events_mutex);
  172. if (event_queue_empty(&loop->custom_events)) {
  173. goto unlock;
  174. }
  175. pev = event_queue_front(&loop->custom_events);
  176. if (pev == NULL) {
  177. goto unlock;
  178. }
  179. ev = *pev;
  180. event_queue_pop_front(&loop->custom_events);
  181. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  182. hmutex_unlock(&loop->custom_events_mutex);
  183. if (ev.cb) {
  184. ev.cb(&ev);
  185. }
  186. }
  187. return;
  188. unlock:
  189. hmutex_unlock(&loop->custom_events_mutex);
  190. }
  191. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  192. if (ev->loop == NULL) {
  193. ev->loop = loop;
  194. }
  195. if (ev->event_type == 0) {
  196. ev->event_type = HEVENT_TYPE_CUSTOM;
  197. }
  198. if (ev->event_id == 0) {
  199. ev->event_id = hloop_next_event_id();
  200. }
  201. hmutex_lock(&loop->custom_events_mutex);
  202. if (loop->sockpair[SOCKPAIR_WRITE_INDEX] == -1) {
  203. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  204. hloge("socketpair create failed!");
  205. goto unlock;
  206. }
  207. }
  208. int nsend = send(loop->sockpair[SOCKPAIR_WRITE_INDEX], "e", 1, 0);
  209. if (nsend != 1) {
  210. hloge("send failed!");
  211. goto unlock;
  212. }
  213. event_queue_push_back(&loop->custom_events, ev);
  214. unlock:
  215. hmutex_unlock(&loop->custom_events_mutex);
  216. }
  217. static void hloop_init(hloop_t* loop) {
  218. #ifdef OS_WIN
  219. static int s_wsa_initialized = 0;
  220. if (s_wsa_initialized == 0) {
  221. s_wsa_initialized = 1;
  222. WSADATA wsadata;
  223. WSAStartup(MAKEWORD(2,2), &wsadata);
  224. }
  225. #endif
  226. #ifdef SIGPIPE
  227. // NOTE: if not ignore SIGPIPE, write twice when peer close will lead to exit process by SIGPIPE.
  228. signal(SIGPIPE, SIG_IGN);
  229. #endif
  230. loop->status = HLOOP_STATUS_STOP;
  231. loop->pid = hv_getpid();
  232. loop->tid = hv_gettid();
  233. // idles
  234. list_init(&loop->idles);
  235. // timers
  236. heap_init(&loop->timers, timers_compare);
  237. // ios
  238. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  239. // readbuf
  240. loop->readbuf.len = HLOOP_READ_BUFSIZE;
  241. HV_ALLOC(loop->readbuf.base, loop->readbuf.len);
  242. // iowatcher
  243. iowatcher_init(loop);
  244. // custom_events
  245. hmutex_init(&loop->custom_events_mutex);
  246. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  247. // NOTE: create socketpair when hloop_post_event or hloop_run
  248. loop->sockpair[0] = loop->sockpair[1] = -1;
  249. // NOTE: init start_time here, because htimer_add use it.
  250. loop->start_ms = gettimeofday_ms();
  251. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  252. }
  253. static void hloop_cleanup(hloop_t* loop) {
  254. // pendings
  255. printd("cleanup pendings...\n");
  256. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  257. loop->pendings[i] = NULL;
  258. }
  259. // ios
  260. printd("cleanup ios...\n");
  261. for (int i = 0; i < loop->ios.maxsize; ++i) {
  262. hio_t* io = loop->ios.ptr[i];
  263. if (io) {
  264. hio_free(io);
  265. }
  266. }
  267. io_array_cleanup(&loop->ios);
  268. // idles
  269. printd("cleanup idles...\n");
  270. struct list_node* node = loop->idles.next;
  271. hidle_t* idle;
  272. while (node != &loop->idles) {
  273. idle = IDLE_ENTRY(node);
  274. node = node->next;
  275. HV_FREE(idle);
  276. }
  277. list_init(&loop->idles);
  278. // timers
  279. printd("cleanup timers...\n");
  280. htimer_t* timer;
  281. while (loop->timers.root) {
  282. timer = TIMER_ENTRY(loop->timers.root);
  283. heap_dequeue(&loop->timers);
  284. HV_FREE(timer);
  285. }
  286. heap_init(&loop->timers, NULL);
  287. // readbuf
  288. if (loop->readbuf.base && loop->readbuf.len) {
  289. HV_FREE(loop->readbuf.base);
  290. loop->readbuf.base = NULL;
  291. loop->readbuf.len = 0;
  292. }
  293. // iowatcher
  294. iowatcher_cleanup(loop);
  295. // custom_events
  296. hmutex_lock(&loop->custom_events_mutex);
  297. if (loop->sockpair[SOCKPAIR_READ_INDEX] != -1) {
  298. close(loop->sockpair[SOCKPAIR_READ_INDEX]);
  299. loop->sockpair[SOCKPAIR_READ_INDEX] = -1;
  300. }
  301. if (loop->sockpair[SOCKPAIR_WRITE_INDEX] != -1) {
  302. close(loop->sockpair[SOCKPAIR_WRITE_INDEX]);
  303. loop->sockpair[SOCKPAIR_WRITE_INDEX] = -1;
  304. }
  305. event_queue_cleanup(&loop->custom_events);
  306. hmutex_unlock(&loop->custom_events_mutex);
  307. hmutex_destroy(&loop->custom_events_mutex);
  308. }
  309. hloop_t* hloop_new(int flags) {
  310. hloop_t* loop;
  311. HV_ALLOC_SIZEOF(loop);
  312. hloop_init(loop);
  313. loop->flags |= flags;
  314. return loop;
  315. }
  316. void hloop_free(hloop_t** pp) {
  317. if (pp && *pp) {
  318. hloop_cleanup(*pp);
  319. HV_FREE(*pp);
  320. *pp = NULL;
  321. }
  322. }
  323. // while (loop->status) { hloop_process_events(loop); }
  324. int hloop_run(hloop_t* loop) {
  325. if (loop == NULL) return -1;
  326. if (loop->status == HLOOP_STATUS_RUNNING) return -2;
  327. loop->status = HLOOP_STATUS_RUNNING;
  328. loop->pid = hv_getpid();
  329. loop->tid = hv_gettid();
  330. if (loop->intern_nevents == 0) {
  331. hmutex_lock(&loop->custom_events_mutex);
  332. if (loop->sockpair[SOCKPAIR_WRITE_INDEX] == -1) {
  333. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  334. hloge("socketpair create failed!");
  335. } else {
  336. hread(loop, loop->sockpair[SOCKPAIR_READ_INDEX], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  337. // NOTE: Avoid duplication closesocket in hio_cleanup
  338. loop->sockpair[SOCKPAIR_READ_INDEX] = -1;
  339. ++loop->intern_nevents;
  340. }
  341. }
  342. hmutex_unlock(&loop->custom_events_mutex);
  343. #ifdef DEBUG
  344. htimer_add(loop, hloop_stat_timer_cb, HLOOP_STAT_TIMEOUT, INFINITE);
  345. ++loop->intern_nevents;
  346. #endif
  347. }
  348. while (loop->status != HLOOP_STATUS_STOP) {
  349. if (loop->status == HLOOP_STATUS_PAUSE) {
  350. hv_msleep(HLOOP_PAUSE_TIME);
  351. hloop_update_time(loop);
  352. continue;
  353. }
  354. ++loop->loop_cnt;
  355. if (loop->nactives <= loop->intern_nevents && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  356. break;
  357. }
  358. hloop_process_events(loop);
  359. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  360. break;
  361. }
  362. }
  363. loop->status = HLOOP_STATUS_STOP;
  364. loop->end_hrtime = gethrtime_us();
  365. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  366. hloop_cleanup(loop);
  367. HV_FREE(loop);
  368. }
  369. return 0;
  370. }
  371. int hloop_wakeup(hloop_t* loop) {
  372. hevent_t ev;
  373. memset(&ev, 0, sizeof(ev));
  374. hloop_post_event(loop, &ev);
  375. return 0;
  376. }
  377. int hloop_stop(hloop_t* loop) {
  378. if (hv_gettid() != loop->tid) {
  379. hloop_wakeup(loop);
  380. }
  381. loop->status = HLOOP_STATUS_STOP;
  382. return 0;
  383. }
  384. int hloop_pause(hloop_t* loop) {
  385. if (loop->status == HLOOP_STATUS_RUNNING) {
  386. loop->status = HLOOP_STATUS_PAUSE;
  387. }
  388. return 0;
  389. }
  390. int hloop_resume(hloop_t* loop) {
  391. if (loop->status == HLOOP_STATUS_PAUSE) {
  392. loop->status = HLOOP_STATUS_RUNNING;
  393. }
  394. return 0;
  395. }
  396. hloop_status_e hloop_status(hloop_t* loop) {
  397. return loop->status;
  398. }
  399. void hloop_update_time(hloop_t* loop) {
  400. loop->cur_hrtime = gethrtime_us();
  401. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  402. // systemtime changed, we adjust start_ms
  403. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  404. }
  405. }
  406. uint64_t hloop_now(hloop_t* loop) {
  407. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  408. }
  409. uint64_t hloop_now_ms(hloop_t* loop) {
  410. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  411. }
  412. uint64_t hloop_now_hrtime(hloop_t* loop) {
  413. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  414. }
  415. long hloop_pid(hloop_t* loop) {
  416. return loop->pid;
  417. }
  418. long hloop_tid(hloop_t* loop) {
  419. return loop->tid;
  420. }
  421. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  422. loop->userdata = userdata;
  423. }
  424. void* hloop_userdata(hloop_t* loop) {
  425. return loop->userdata;
  426. }
  427. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  428. hidle_t* idle;
  429. HV_ALLOC_SIZEOF(idle);
  430. idle->event_type = HEVENT_TYPE_IDLE;
  431. idle->priority = HEVENT_LOWEST_PRIORITY;
  432. idle->repeat = repeat;
  433. list_add(&idle->node, &loop->idles);
  434. EVENT_ADD(loop, idle, cb);
  435. loop->nidles++;
  436. return idle;
  437. }
  438. static void __hidle_del(hidle_t* idle) {
  439. if (idle->destroy) return;
  440. idle->destroy = 1;
  441. list_del(&idle->node);
  442. idle->loop->nidles--;
  443. }
  444. void hidle_del(hidle_t* idle) {
  445. if (!idle->active) return;
  446. __hidle_del(idle);
  447. EVENT_DEL(idle);
  448. }
  449. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  450. if (timeout == 0) return NULL;
  451. htimeout_t* timer;
  452. HV_ALLOC_SIZEOF(timer);
  453. timer->event_type = HEVENT_TYPE_TIMEOUT;
  454. timer->priority = HEVENT_HIGHEST_PRIORITY;
  455. timer->repeat = repeat;
  456. timer->timeout = timeout;
  457. hloop_update_time(loop);
  458. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout*1000;
  459. // NOTE: Limit granularity to 100ms
  460. if (timeout >= 1000 && timeout % 100 == 0) {
  461. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  462. }
  463. heap_insert(&loop->timers, &timer->node);
  464. EVENT_ADD(loop, timer, cb);
  465. loop->ntimers++;
  466. return (htimer_t*)timer;
  467. }
  468. void htimer_reset(htimer_t* timer) {
  469. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  470. return;
  471. }
  472. hloop_t* loop = timer->loop;
  473. htimeout_t* timeout = (htimeout_t*)timer;
  474. if (timer->destroy) {
  475. loop->ntimers++;
  476. } else {
  477. heap_remove(&loop->timers, &timer->node);
  478. }
  479. if (timer->repeat == 0) {
  480. timer->repeat = 1;
  481. }
  482. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout->timeout*1000;
  483. // NOTE: Limit granularity to 100ms
  484. if (timeout->timeout >= 1000 && timeout->timeout % 100 == 0) {
  485. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  486. }
  487. heap_insert(&loop->timers, &timer->node);
  488. EVENT_RESET(timer);
  489. }
  490. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  491. int8_t minute, int8_t hour, int8_t day,
  492. int8_t week, int8_t month, uint32_t repeat) {
  493. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  494. return NULL;
  495. }
  496. hperiod_t* timer;
  497. HV_ALLOC_SIZEOF(timer);
  498. timer->event_type = HEVENT_TYPE_PERIOD;
  499. timer->priority = HEVENT_HIGH_PRIORITY;
  500. timer->repeat = repeat;
  501. timer->minute = minute;
  502. timer->hour = hour;
  503. timer->day = day;
  504. timer->month = month;
  505. timer->week = week;
  506. timer->next_timeout = (uint64_t)cron_next_timeout(minute, hour, day, week, month) * 1000000;
  507. heap_insert(&loop->timers, &timer->node);
  508. EVENT_ADD(loop, timer, cb);
  509. loop->ntimers++;
  510. return (htimer_t*)timer;
  511. }
  512. static void __htimer_del(htimer_t* timer) {
  513. if (timer->destroy) return;
  514. heap_remove(&timer->loop->timers, &timer->node);
  515. timer->loop->ntimers--;
  516. timer->destroy = 1;
  517. }
  518. void htimer_del(htimer_t* timer) {
  519. if (!timer->active) return;
  520. __htimer_del(timer);
  521. EVENT_DEL(timer);
  522. }
  523. const char* hio_engine() {
  524. #ifdef EVENT_SELECT
  525. return "select";
  526. #elif defined(EVENT_POLL)
  527. return "poll";
  528. #elif defined(EVENT_EPOLL)
  529. return "epoll";
  530. #elif defined(EVENT_KQUEUE)
  531. return "kqueue";
  532. #elif defined(EVENT_IOCP)
  533. return "iocp";
  534. #elif defined(EVENT_PORT)
  535. return "evport";
  536. #else
  537. return "noevent";
  538. #endif
  539. }
  540. hio_t* hio_get(hloop_t* loop, int fd) {
  541. if (fd >= loop->ios.maxsize) {
  542. int newsize = ceil2e(fd);
  543. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  544. }
  545. hio_t* io = loop->ios.ptr[fd];
  546. if (io == NULL) {
  547. HV_ALLOC_SIZEOF(io);
  548. hio_init(io);
  549. io->event_type = HEVENT_TYPE_IO;
  550. io->loop = loop;
  551. io->fd = fd;
  552. loop->ios.ptr[fd] = io;
  553. }
  554. if (!io->ready) {
  555. hio_ready(io);
  556. }
  557. return io;
  558. }
  559. void hio_detach(hio_t* io) {
  560. hloop_t* loop = io->loop;
  561. int fd = io->fd;
  562. assert(loop != NULL && fd < loop->ios.maxsize);
  563. loop->ios.ptr[fd] = NULL;
  564. }
  565. void hio_attach(hloop_t* loop, hio_t* io) {
  566. int fd = io->fd;
  567. if (fd >= loop->ios.maxsize) {
  568. int newsize = ceil2e(fd);
  569. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  570. }
  571. // NOTE: hio was not freed for reused when closed, but attached hio can't be reused,
  572. // so we need to free it if fd exists to avoid memory leak.
  573. hio_t* preio = loop->ios.ptr[fd];
  574. if (preio != NULL && preio != io) {
  575. hio_free(preio);
  576. }
  577. io->loop = loop;
  578. // NOTE: use new_loop readbuf
  579. io->readbuf.base = loop->readbuf.base;
  580. io->readbuf.len = loop->readbuf.len;
  581. loop->ios.ptr[fd] = io;
  582. }
  583. bool hio_exists(hloop_t* loop, int fd) {
  584. if (fd >= loop->ios.maxsize) {
  585. return false;
  586. }
  587. return loop->ios.ptr[fd] != NULL;
  588. }
  589. int hio_add(hio_t* io, hio_cb cb, int events) {
  590. printd("hio_add fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  591. #ifdef OS_WIN
  592. // Windows iowatcher not work on stdio
  593. if (io->fd < 3) return -1;
  594. #endif
  595. hloop_t* loop = io->loop;
  596. if (!io->active) {
  597. EVENT_ADD(loop, io, cb);
  598. loop->nios++;
  599. }
  600. if (!io->ready) {
  601. hio_ready(io);
  602. }
  603. if (cb) {
  604. io->cb = (hevent_cb)cb;
  605. }
  606. if (!(io->events & events)) {
  607. iowatcher_add_event(loop, io->fd, events);
  608. io->events |= events;
  609. }
  610. return 0;
  611. }
  612. int hio_del(hio_t* io, int events) {
  613. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  614. #ifdef OS_WIN
  615. // Windows iowatcher not work on stdio
  616. if (io->fd < 3) return -1;
  617. #endif
  618. if (!io->active) return -1;
  619. if (io->events & events) {
  620. iowatcher_del_event(io->loop, io->fd, events);
  621. io->events &= ~events;
  622. }
  623. if (io->events == 0) {
  624. io->loop->nios--;
  625. // NOTE: not EVENT_DEL, avoid free
  626. EVENT_INACTIVE(io);
  627. }
  628. return 0;
  629. }
  630. static void hio_close_event_cb(hevent_t* ev) {
  631. hio_t* io = (hio_t*)ev->userdata;
  632. uint32_t id = (uintptr_t)ev->privdata;
  633. if (io->id != id) return;
  634. hio_close(io);
  635. }
  636. int hio_close_async(hio_t* io) {
  637. hevent_t ev;
  638. memset(&ev, 0, sizeof(ev));
  639. ev.cb = hio_close_event_cb;
  640. ev.userdata = io;
  641. ev.privdata = (void*)(uintptr_t)io->id;
  642. ev.priority = HEVENT_HIGH_PRIORITY;
  643. hloop_post_event(io->loop, &ev);
  644. return 0;
  645. }
  646. //------------------high-level apis-------------------------------------------
  647. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  648. hio_t* io = hio_get(loop, fd);
  649. assert(io != NULL);
  650. if (buf && len) {
  651. io->readbuf.base = (char*)buf;
  652. io->readbuf.len = len;
  653. }
  654. if (read_cb) {
  655. io->read_cb = read_cb;
  656. }
  657. hio_read(io);
  658. return io;
  659. }
  660. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  661. hio_t* io = hio_get(loop, fd);
  662. assert(io != NULL);
  663. if (write_cb) {
  664. io->write_cb = write_cb;
  665. }
  666. hio_write(io, buf, len);
  667. return io;
  668. }
  669. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  670. hio_t* io = hio_get(loop, listenfd);
  671. assert(io != NULL);
  672. if (accept_cb) {
  673. io->accept_cb = accept_cb;
  674. }
  675. hio_accept(io);
  676. return io;
  677. }
  678. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  679. hio_t* io = hio_get(loop, connfd);
  680. assert(io != NULL);
  681. if (connect_cb) {
  682. io->connect_cb = connect_cb;
  683. }
  684. hio_connect(io);
  685. return io;
  686. }
  687. void hclose (hloop_t* loop, int fd) {
  688. hio_t* io = hio_get(loop, fd);
  689. assert(io != NULL);
  690. hio_close(io);
  691. }
  692. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  693. //hio_t* io = hio_get(loop, connfd);
  694. //assert(io != NULL);
  695. //io->recv = 1;
  696. //if (io->io_type != HIO_TYPE_SSL) {
  697. //io->io_type = HIO_TYPE_TCP;
  698. //}
  699. return hread(loop, connfd, buf, len, read_cb);
  700. }
  701. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  702. //hio_t* io = hio_get(loop, connfd);
  703. //assert(io != NULL);
  704. //io->send = 1;
  705. //if (io->io_type != HIO_TYPE_SSL) {
  706. //io->io_type = HIO_TYPE_TCP;
  707. //}
  708. return hwrite(loop, connfd, buf, len, write_cb);
  709. }
  710. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  711. //hio_t* io = hio_get(loop, sockfd);
  712. //assert(io != NULL);
  713. //io->recvfrom = 1;
  714. //io->io_type = HIO_TYPE_UDP;
  715. return hread(loop, sockfd, buf, len, read_cb);
  716. }
  717. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  718. //hio_t* io = hio_get(loop, sockfd);
  719. //assert(io != NULL);
  720. //io->sendto = 1;
  721. //io->io_type = HIO_TYPE_UDP;
  722. return hwrite(loop, sockfd, buf, len, write_cb);
  723. }
  724. //-----------------top-level apis---------------------------------------------
  725. hio_t* hio_create_socket(hloop_t* loop, const char* host, int port, hio_type_e type, hio_side_e side) {
  726. int sock_type = type & HIO_TYPE_SOCK_STREAM ? SOCK_STREAM :
  727. type & HIO_TYPE_SOCK_DGRAM ? SOCK_DGRAM :
  728. type & HIO_TYPE_SOCK_RAW ? SOCK_RAW : -1;
  729. if (sock_type == -1) return NULL;
  730. sockaddr_u addr;
  731. memset(&addr, 0, sizeof(addr));
  732. int ret = -1;
  733. #ifdef ENABLE_UDS
  734. if (port <= 0) {
  735. sockaddr_set_path(&addr, host);
  736. ret = 0;
  737. }
  738. #endif
  739. if (port > 0) {
  740. ret = sockaddr_set_ipport(&addr, host, port);
  741. }
  742. if (ret != 0) {
  743. // fprintf(stderr, "unknown host: %s\n", host);
  744. return NULL;
  745. }
  746. int sockfd = socket(addr.sa.sa_family, sock_type, 0);
  747. if (sockfd < 0) {
  748. perror("socket");
  749. return NULL;
  750. }
  751. hio_t* io = NULL;
  752. if (side == HIO_SERVER_SIDE) {
  753. #ifdef SO_REUSEADDR
  754. // NOTE: SO_REUSEADDR allow to reuse sockaddr of TIME_WAIT status
  755. int reuseaddr = 1;
  756. if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (const char*)&reuseaddr, sizeof(int)) < 0) {
  757. perror("setsockopt");
  758. closesocket(sockfd);
  759. return NULL;
  760. }
  761. #endif
  762. if (bind(sockfd, &addr.sa, sockaddr_len(&addr)) < 0) {
  763. perror("bind");
  764. closesocket(sockfd);
  765. return NULL;
  766. }
  767. if (sock_type == SOCK_STREAM) {
  768. if (listen(sockfd, SOMAXCONN) < 0) {
  769. perror("listen");
  770. closesocket(sockfd);
  771. return NULL;
  772. }
  773. }
  774. }
  775. io = hio_get(loop, sockfd);
  776. assert(io != NULL);
  777. io->io_type = type;
  778. if (side == HIO_SERVER_SIDE) {
  779. hio_set_localaddr(io, &addr.sa, sockaddr_len(&addr));
  780. } else {
  781. hio_set_peeraddr(io, &addr.sa, sockaddr_len(&addr));
  782. }
  783. return io;
  784. }
  785. hio_t* hloop_create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  786. hio_t* io = hio_create_socket(loop, host, port, HIO_TYPE_TCP, HIO_SERVER_SIDE);
  787. if (io == NULL) return NULL;
  788. hio_setcb_accept(io, accept_cb);
  789. hio_accept(io);
  790. return io;
  791. }
  792. hio_t* hloop_create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  793. hio_t* io = hio_create_socket(loop, host, port, HIO_TYPE_TCP, HIO_CLIENT_SIDE);
  794. if (io == NULL) return NULL;
  795. hio_setcb_connect(io, connect_cb);
  796. hio_connect(io);
  797. return io;
  798. }
  799. hio_t* hloop_create_ssl_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  800. hio_t* io = hio_create_socket(loop, host, port, HIO_TYPE_SSL, HIO_SERVER_SIDE);
  801. if (io == NULL) return NULL;
  802. hio_setcb_accept(io, accept_cb);
  803. hio_accept(io);
  804. return io;
  805. }
  806. hio_t* hloop_create_ssl_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  807. hio_t* io = hio_create_socket(loop, host, port, HIO_TYPE_SSL, HIO_CLIENT_SIDE);
  808. if (io == NULL) return NULL;
  809. hio_setcb_connect(io, connect_cb);
  810. hio_connect(io);
  811. return io;
  812. }
  813. hio_t* hloop_create_udp_server(hloop_t* loop, const char* host, int port) {
  814. return hio_create_socket(loop, host, port, HIO_TYPE_UDP, HIO_SERVER_SIDE);
  815. }
  816. hio_t* hloop_create_udp_client(hloop_t* loop, const char* host, int port) {
  817. return hio_create_socket(loop, host, port, HIO_TYPE_UDP, HIO_CLIENT_SIDE);
  818. }