hevent.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. #include "hevent.h"
  2. #include "hsocket.h"
  3. #include "hatomic.h"
  4. #include "hlog.h"
  5. #include "herr.h"
  6. #include "unpack.h"
  7. uint64_t hloop_next_event_id() {
  8. static hatomic_t s_id = HATOMIC_VAR_INIT(0);
  9. return ++s_id;
  10. }
  11. uint32_t hio_next_id() {
  12. static hatomic_t s_id = HATOMIC_VAR_INIT(0);
  13. return ++s_id;
  14. }
  15. static void fill_io_type(hio_t* io) {
  16. int type = 0;
  17. socklen_t optlen = sizeof(int);
  18. int ret = getsockopt(io->fd, SOL_SOCKET, SO_TYPE, (char*)&type, &optlen);
  19. printd("getsockopt SO_TYPE fd=%d ret=%d type=%d errno=%d\n", io->fd, ret, type, socket_errno());
  20. if (ret == 0) {
  21. switch (type) {
  22. case SOCK_STREAM: io->io_type = HIO_TYPE_TCP; break;
  23. case SOCK_DGRAM: io->io_type = HIO_TYPE_UDP; break;
  24. case SOCK_RAW: io->io_type = HIO_TYPE_IP; break;
  25. default: io->io_type = HIO_TYPE_SOCKET; break;
  26. }
  27. }
  28. else if (socket_errno() == ENOTSOCK) {
  29. switch (io->fd) {
  30. case 0: io->io_type = HIO_TYPE_STDIN; break;
  31. case 1: io->io_type = HIO_TYPE_STDOUT; break;
  32. case 2: io->io_type = HIO_TYPE_STDERR; break;
  33. default: io->io_type = HIO_TYPE_FILE; break;
  34. }
  35. }
  36. else {
  37. io->io_type = HIO_TYPE_TCP;
  38. }
  39. }
  40. static void hio_socket_init(hio_t* io) {
  41. if ((io->io_type & HIO_TYPE_SOCK_DGRAM) || (io->io_type & HIO_TYPE_SOCK_RAW)) {
  42. // NOTE: sendto multiple peeraddr cannot use io->write_queue
  43. blocking(io->fd);
  44. } else {
  45. nonblocking(io->fd);
  46. }
  47. // fill io->localaddr io->peeraddr
  48. if (io->localaddr == NULL) {
  49. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  50. }
  51. if (io->peeraddr == NULL) {
  52. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  53. }
  54. socklen_t addrlen = sizeof(sockaddr_u);
  55. int ret = getsockname(io->fd, io->localaddr, &addrlen);
  56. printd("getsockname fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  57. // NOTE: udp peeraddr set by recvfrom/sendto
  58. if (io->io_type & HIO_TYPE_SOCK_STREAM) {
  59. addrlen = sizeof(sockaddr_u);
  60. ret = getpeername(io->fd, io->peeraddr, &addrlen);
  61. printd("getpeername fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  62. }
  63. }
  64. void hio_init(hio_t* io) {
  65. // alloc localaddr,peeraddr when hio_socket_init
  66. /*
  67. if (io->localaddr == NULL) {
  68. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  69. }
  70. if (io->peeraddr == NULL) {
  71. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  72. }
  73. */
  74. // write_queue init when hwrite try_write failed
  75. // write_queue_init(&io->write_queue, 4);
  76. hrecursive_mutex_init(&io->write_mutex);
  77. }
  78. void hio_ready(hio_t* io) {
  79. if (io->ready) return;
  80. // flags
  81. io->ready = 1;
  82. io->closed = 0;
  83. io->accept = io->connect = io->connectex = 0;
  84. io->recv = io->send = 0;
  85. io->recvfrom = io->sendto = 0;
  86. io->close = 0;
  87. // public:
  88. io->id = hio_next_id();
  89. io->io_type = HIO_TYPE_UNKNOWN;
  90. io->error = 0;
  91. io->events = io->revents = 0;
  92. io->last_read_hrtime = io->last_write_hrtime = io->loop->cur_hrtime;
  93. // readbuf
  94. io->alloced_readbuf = 0;
  95. io->readbuf.base = io->loop->readbuf.base;
  96. io->readbuf.len = io->loop->readbuf.len;
  97. io->readbuf.head = io->readbuf.tail = 0;
  98. io->read_flags = 0;
  99. io->read_until_length = 0;
  100. io->max_read_bufsize = MAX_READ_BUFSIZE;
  101. io->small_readbytes_cnt = 0;
  102. // write_queue
  103. io->write_bufsize = 0;
  104. io->max_write_bufsize = MAX_WRITE_BUFSIZE;
  105. // callbacks
  106. io->read_cb = NULL;
  107. io->write_cb = NULL;
  108. io->close_cb = NULL;
  109. io->accept_cb = NULL;
  110. io->connect_cb = NULL;
  111. // timers
  112. io->connect_timeout = 0;
  113. io->connect_timer = NULL;
  114. io->close_timeout = 0;
  115. io->close_timer = NULL;
  116. io->read_timeout = 0;
  117. io->read_timer = NULL;
  118. io->write_timeout = 0;
  119. io->write_timer = NULL;
  120. io->keepalive_timeout = 0;
  121. io->keepalive_timer = NULL;
  122. io->heartbeat_interval = 0;
  123. io->heartbeat_fn = NULL;
  124. io->heartbeat_timer = NULL;
  125. // upstream
  126. io->upstream_io = NULL;
  127. // unpack
  128. io->unpack_setting = NULL;
  129. // ssl
  130. io->ssl = NULL;
  131. io->ssl_ctx = NULL;
  132. io->alloced_ssl_ctx = 0;
  133. io->hostname = NULL;
  134. // context
  135. io->ctx = NULL;
  136. // private:
  137. #if defined(EVENT_POLL) || defined(EVENT_KQUEUE)
  138. io->event_index[0] = io->event_index[1] = -1;
  139. #endif
  140. #ifdef EVENT_IOCP
  141. io->hovlp = NULL;
  142. #endif
  143. // io_type
  144. fill_io_type(io);
  145. if (io->io_type & HIO_TYPE_SOCKET) {
  146. hio_socket_init(io);
  147. }
  148. #if WITH_RUDP
  149. if ((io->io_type & HIO_TYPE_SOCK_DGRAM) || (io->io_type & HIO_TYPE_SOCK_RAW)) {
  150. rudp_init(&io->rudp);
  151. }
  152. #endif
  153. }
  154. void hio_done(hio_t* io) {
  155. if (!io->ready) return;
  156. io->ready = 0;
  157. hio_del(io, HV_RDWR);
  158. // readbuf
  159. hio_free_readbuf(io);
  160. // write_queue
  161. offset_buf_t* pbuf = NULL;
  162. hrecursive_mutex_lock(&io->write_mutex);
  163. while (!write_queue_empty(&io->write_queue)) {
  164. pbuf = write_queue_front(&io->write_queue);
  165. HV_FREE(pbuf->base);
  166. write_queue_pop_front(&io->write_queue);
  167. }
  168. write_queue_cleanup(&io->write_queue);
  169. hrecursive_mutex_unlock(&io->write_mutex);
  170. #if WITH_RUDP
  171. if ((io->io_type & HIO_TYPE_SOCK_DGRAM) || (io->io_type & HIO_TYPE_SOCK_RAW)) {
  172. rudp_cleanup(&io->rudp);
  173. }
  174. #endif
  175. }
  176. void hio_free(hio_t* io) {
  177. if (io == NULL) return;
  178. hio_close(io);
  179. hrecursive_mutex_destroy(&io->write_mutex);
  180. HV_FREE(io->localaddr);
  181. HV_FREE(io->peeraddr);
  182. HV_FREE(io);
  183. }
  184. bool hio_is_opened(hio_t* io) {
  185. if (io == NULL) return false;
  186. return io->ready == 1 && io->closed == 0;
  187. }
  188. bool hio_is_closed(hio_t* io) {
  189. if (io == NULL) return true;
  190. return io->ready == 0 && io->closed == 1;
  191. }
  192. uint32_t hio_id (hio_t* io) {
  193. return io->id;
  194. }
  195. int hio_fd(hio_t* io) {
  196. return io->fd;
  197. }
  198. hio_type_e hio_type(hio_t* io) {
  199. return io->io_type;
  200. }
  201. int hio_error(hio_t* io) {
  202. return io->error;
  203. }
  204. int hio_events(hio_t* io) {
  205. return io->events;
  206. }
  207. int hio_revents(hio_t* io) {
  208. return io->revents;
  209. }
  210. struct sockaddr* hio_localaddr(hio_t* io) {
  211. return io->localaddr;
  212. }
  213. struct sockaddr* hio_peeraddr(hio_t* io) {
  214. return io->peeraddr;
  215. }
  216. void hio_set_context(hio_t* io, void* ctx) {
  217. io->ctx = ctx;
  218. }
  219. void* hio_context(hio_t* io) {
  220. return io->ctx;
  221. }
  222. haccept_cb hio_getcb_accept(hio_t* io) {
  223. return io->accept_cb;
  224. }
  225. hconnect_cb hio_getcb_connect(hio_t* io) {
  226. return io->connect_cb;
  227. }
  228. hread_cb hio_getcb_read(hio_t* io) {
  229. return io->read_cb;
  230. }
  231. hwrite_cb hio_getcb_write(hio_t* io) {
  232. return io->write_cb;
  233. }
  234. hclose_cb hio_getcb_close(hio_t* io) {
  235. return io->close_cb;
  236. }
  237. void hio_setcb_accept(hio_t* io, haccept_cb accept_cb) {
  238. io->accept_cb = accept_cb;
  239. }
  240. void hio_setcb_connect(hio_t* io, hconnect_cb connect_cb) {
  241. io->connect_cb = connect_cb;
  242. }
  243. void hio_setcb_read(hio_t* io, hread_cb read_cb) {
  244. io->read_cb = read_cb;
  245. }
  246. void hio_setcb_write(hio_t* io, hwrite_cb write_cb) {
  247. io->write_cb = write_cb;
  248. }
  249. void hio_setcb_close(hio_t* io, hclose_cb close_cb) {
  250. io->close_cb = close_cb;
  251. }
  252. void hio_accept_cb(hio_t* io) {
  253. /*
  254. char localaddrstr[SOCKADDR_STRLEN] = {0};
  255. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  256. printd("accept connfd=%d [%s] <= [%s]\n", io->fd,
  257. SOCKADDR_STR(io->localaddr, localaddrstr),
  258. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  259. */
  260. if (io->accept_cb) {
  261. // printd("accept_cb------\n");
  262. io->accept_cb(io);
  263. // printd("accept_cb======\n");
  264. }
  265. }
  266. void hio_connect_cb(hio_t* io) {
  267. /*
  268. char localaddrstr[SOCKADDR_STRLEN] = {0};
  269. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  270. printd("connect connfd=%d [%s] => [%s]\n", io->fd,
  271. SOCKADDR_STR(io->localaddr, localaddrstr),
  272. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  273. */
  274. if (io->connect_cb) {
  275. // printd("connect_cb------\n");
  276. io->connect_cb(io);
  277. // printd("connect_cb======\n");
  278. }
  279. }
  280. void hio_handle_read(hio_t* io, void* buf, int readbytes) {
  281. #if WITH_KCP
  282. if (io->io_type == HIO_TYPE_KCP) {
  283. hio_read_kcp(io, buf, readbytes);
  284. return;
  285. }
  286. #endif
  287. if (io->unpack_setting) {
  288. // hio_set_unpack
  289. hio_unpack(io, buf, readbytes);
  290. } else {
  291. const unsigned char* sp = (const unsigned char*)io->readbuf.base + io->readbuf.head;
  292. const unsigned char* ep = (const unsigned char*)buf + readbytes;
  293. if (io->read_flags & HIO_READ_UNTIL_LENGTH) {
  294. // hio_read_until_length
  295. if (ep - sp >= io->read_until_length) {
  296. io->readbuf.head += io->read_until_length;
  297. if (io->readbuf.head == io->readbuf.tail) {
  298. io->readbuf.head = io->readbuf.tail = 0;
  299. }
  300. io->read_flags &= ~HIO_READ_UNTIL_LENGTH;
  301. hio_read_cb(io, (void*)sp, io->read_until_length);
  302. }
  303. } else if (io->read_flags & HIO_READ_UNTIL_DELIM) {
  304. // hio_read_until_delim
  305. const unsigned char* p = (const unsigned char*)buf;
  306. for (int i = 0; i < readbytes; ++i, ++p) {
  307. if (*p == io->read_until_delim) {
  308. int len = p - sp + 1;
  309. io->readbuf.head += len;
  310. if (io->readbuf.head == io->readbuf.tail) {
  311. io->readbuf.head = io->readbuf.tail = 0;
  312. }
  313. io->read_flags &= ~HIO_READ_UNTIL_DELIM;
  314. hio_read_cb(io, (void*)sp, len);
  315. return;
  316. }
  317. }
  318. } else {
  319. // hio_read
  320. io->readbuf.head = io->readbuf.tail = 0;
  321. hio_read_cb(io, (void*)sp, ep - sp);
  322. }
  323. }
  324. if (io->readbuf.head == io->readbuf.tail) {
  325. io->readbuf.head = io->readbuf.tail = 0;
  326. }
  327. // readbuf autosize
  328. if (io->readbuf.tail == io->readbuf.len) {
  329. if (io->readbuf.head == 0) {
  330. // scale up * 2
  331. hio_alloc_readbuf(io, io->readbuf.len * 2);
  332. } else {
  333. // [head, tail] => [base, tail - head]
  334. memmove(io->readbuf.base, io->readbuf.base + io->readbuf.head, io->readbuf.tail - io->readbuf.head);
  335. }
  336. } else {
  337. size_t small_size = io->readbuf.len / 2;
  338. if (io->readbuf.tail < small_size &&
  339. io->small_readbytes_cnt >= 3) {
  340. // scale down / 2
  341. hio_alloc_readbuf(io, small_size);
  342. }
  343. }
  344. }
  345. void hio_read_cb(hio_t* io, void* buf, int len) {
  346. if (io->read_flags & HIO_READ_ONCE) {
  347. io->read_flags &= ~HIO_READ_ONCE;
  348. hio_read_stop(io);
  349. }
  350. if (io->read_cb) {
  351. // printd("read_cb------\n");
  352. io->read_cb(io, buf, len);
  353. // printd("read_cb======\n");
  354. }
  355. // for readbuf autosize
  356. if (hio_is_alloced_readbuf(io) && io->readbuf.len > READ_BUFSIZE_HIGH_WATER) {
  357. size_t small_size = io->readbuf.len / 2;
  358. if (len < small_size) {
  359. ++io->small_readbytes_cnt;
  360. } else {
  361. io->small_readbytes_cnt = 0;
  362. }
  363. }
  364. }
  365. void hio_write_cb(hio_t* io, const void* buf, int len) {
  366. if (io->write_cb) {
  367. // printd("write_cb------\n");
  368. io->write_cb(io, buf, len);
  369. // printd("write_cb======\n");
  370. }
  371. }
  372. void hio_close_cb(hio_t* io) {
  373. if (io->close_cb) {
  374. // printd("close_cb------\n");
  375. io->close_cb(io);
  376. // printd("close_cb======\n");
  377. }
  378. }
  379. void hio_set_type(hio_t* io, hio_type_e type) {
  380. io->io_type = type;
  381. }
  382. void hio_set_localaddr(hio_t* io, struct sockaddr* addr, int addrlen) {
  383. if (io->localaddr == NULL) {
  384. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  385. }
  386. memcpy(io->localaddr, addr, addrlen);
  387. }
  388. void hio_set_peeraddr (hio_t* io, struct sockaddr* addr, int addrlen) {
  389. if (io->peeraddr == NULL) {
  390. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  391. }
  392. memcpy(io->peeraddr, addr, addrlen);
  393. }
  394. int hio_enable_ssl(hio_t* io) {
  395. io->io_type = HIO_TYPE_SSL;
  396. return 0;
  397. }
  398. bool hio_is_ssl(hio_t* io) {
  399. return io->io_type == HIO_TYPE_SSL;
  400. }
  401. hssl_t hio_get_ssl(hio_t* io) {
  402. return io->ssl;
  403. }
  404. hssl_ctx_t hio_get_ssl_ctx(hio_t* io) {
  405. return io->ssl_ctx;
  406. }
  407. int hio_set_ssl(hio_t* io, hssl_t ssl) {
  408. io->io_type = HIO_TYPE_SSL;
  409. io->ssl = ssl;
  410. return 0;
  411. }
  412. int hio_set_ssl_ctx(hio_t* io, hssl_ctx_t ssl_ctx) {
  413. io->io_type = HIO_TYPE_SSL;
  414. io->ssl_ctx = ssl_ctx;
  415. return 0;
  416. }
  417. int hio_new_ssl_ctx(hio_t* io, hssl_ctx_opt_t* opt) {
  418. hssl_ctx_t ssl_ctx = hssl_ctx_new(opt);
  419. if (ssl_ctx == NULL) return ERR_NEW_SSL_CTX;
  420. io->alloced_ssl_ctx = 1;
  421. return hio_set_ssl_ctx(io, ssl_ctx);
  422. }
  423. int hio_set_hostname(hio_t* io, const char* hostname) {
  424. SAFE_FREE(io->hostname);
  425. io->hostname = strdup(hostname);
  426. return 0;
  427. }
  428. const char* hio_get_hostname(hio_t* io) {
  429. return io->hostname;
  430. }
  431. void hio_del_connect_timer(hio_t* io) {
  432. if (io->connect_timer) {
  433. htimer_del(io->connect_timer);
  434. io->connect_timer = NULL;
  435. io->connect_timeout = 0;
  436. }
  437. }
  438. void hio_del_close_timer(hio_t* io) {
  439. if (io->close_timer) {
  440. htimer_del(io->close_timer);
  441. io->close_timer = NULL;
  442. io->close_timeout = 0;
  443. }
  444. }
  445. void hio_del_read_timer(hio_t* io) {
  446. if (io->read_timer) {
  447. htimer_del(io->read_timer);
  448. io->read_timer = NULL;
  449. io->read_timeout = 0;
  450. }
  451. }
  452. void hio_del_write_timer(hio_t* io) {
  453. if (io->write_timer) {
  454. htimer_del(io->write_timer);
  455. io->write_timer = NULL;
  456. io->write_timeout = 0;
  457. }
  458. }
  459. void hio_del_keepalive_timer(hio_t* io) {
  460. if (io->keepalive_timer) {
  461. htimer_del(io->keepalive_timer);
  462. io->keepalive_timer = NULL;
  463. io->keepalive_timeout = 0;
  464. }
  465. }
  466. void hio_del_heartbeat_timer(hio_t* io) {
  467. if (io->heartbeat_timer) {
  468. htimer_del(io->heartbeat_timer);
  469. io->heartbeat_timer = NULL;
  470. io->heartbeat_interval = 0;
  471. io->heartbeat_fn = NULL;
  472. }
  473. }
  474. void hio_set_connect_timeout(hio_t* io, int timeout_ms) {
  475. io->connect_timeout = timeout_ms;
  476. }
  477. void hio_set_close_timeout(hio_t* io, int timeout_ms) {
  478. io->close_timeout = timeout_ms;
  479. }
  480. static void __read_timeout_cb(htimer_t* timer) {
  481. hio_t* io = (hio_t*)timer->privdata;
  482. uint64_t inactive_ms = (io->loop->cur_hrtime - io->last_read_hrtime) / 1000;
  483. if (inactive_ms + 100 < io->read_timeout) {
  484. ((struct htimeout_s*)io->read_timer)->timeout = io->read_timeout - inactive_ms;
  485. htimer_reset(io->read_timer);
  486. } else {
  487. char localaddrstr[SOCKADDR_STRLEN] = {0};
  488. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  489. hlogw("read timeout [%s] <=> [%s]",
  490. SOCKADDR_STR(io->localaddr, localaddrstr),
  491. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  492. io->error = ETIMEDOUT;
  493. hio_close(io);
  494. }
  495. }
  496. void hio_set_read_timeout(hio_t* io, int timeout_ms) {
  497. if (timeout_ms <= 0) {
  498. // del
  499. hio_del_read_timer(io);
  500. return;
  501. }
  502. if (io->read_timer) {
  503. // reset
  504. ((struct htimeout_s*)io->read_timer)->timeout = timeout_ms;
  505. htimer_reset(io->read_timer);
  506. } else {
  507. // add
  508. io->read_timer = htimer_add(io->loop, __read_timeout_cb, timeout_ms, 1);
  509. io->read_timer->privdata = io;
  510. }
  511. io->read_timeout = timeout_ms;
  512. }
  513. static void __write_timeout_cb(htimer_t* timer) {
  514. hio_t* io = (hio_t*)timer->privdata;
  515. uint64_t inactive_ms = (io->loop->cur_hrtime - io->last_write_hrtime) / 1000;
  516. if (inactive_ms + 100 < io->write_timeout) {
  517. ((struct htimeout_s*)io->write_timer)->timeout = io->write_timeout - inactive_ms;
  518. htimer_reset(io->write_timer);
  519. } else {
  520. char localaddrstr[SOCKADDR_STRLEN] = {0};
  521. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  522. hlogw("write timeout [%s] <=> [%s]",
  523. SOCKADDR_STR(io->localaddr, localaddrstr),
  524. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  525. io->error = ETIMEDOUT;
  526. hio_close(io);
  527. }
  528. }
  529. void hio_set_write_timeout(hio_t* io, int timeout_ms) {
  530. if (timeout_ms <= 0) {
  531. // del
  532. hio_del_write_timer(io);
  533. return;
  534. }
  535. if (io->write_timer) {
  536. // reset
  537. ((struct htimeout_s*)io->write_timer)->timeout = timeout_ms;
  538. htimer_reset(io->write_timer);
  539. } else {
  540. // add
  541. io->write_timer = htimer_add(io->loop, __write_timeout_cb, timeout_ms, 1);
  542. io->write_timer->privdata = io;
  543. }
  544. io->write_timeout = timeout_ms;
  545. }
  546. static void __keepalive_timeout_cb(htimer_t* timer) {
  547. hio_t* io = (hio_t*)timer->privdata;
  548. uint64_t last_rw_hrtime = MAX(io->last_read_hrtime, io->last_write_hrtime);
  549. uint64_t inactive_ms = (io->loop->cur_hrtime - last_rw_hrtime) / 1000;
  550. if (inactive_ms + 100 < io->keepalive_timeout) {
  551. ((struct htimeout_s*)io->keepalive_timer)->timeout = io->keepalive_timeout - inactive_ms;
  552. htimer_reset(io->keepalive_timer);
  553. } else {
  554. char localaddrstr[SOCKADDR_STRLEN] = {0};
  555. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  556. hlogw("keepalive timeout [%s] <=> [%s]",
  557. SOCKADDR_STR(io->localaddr, localaddrstr),
  558. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  559. io->error = ETIMEDOUT;
  560. hio_close(io);
  561. }
  562. }
  563. void hio_set_keepalive_timeout(hio_t* io, int timeout_ms) {
  564. if (timeout_ms <= 0) {
  565. // del
  566. hio_del_keepalive_timer(io);
  567. return;
  568. }
  569. if (io->keepalive_timer) {
  570. // reset
  571. ((struct htimeout_s*)io->keepalive_timer)->timeout = timeout_ms;
  572. htimer_reset(io->keepalive_timer);
  573. } else {
  574. // add
  575. io->keepalive_timer = htimer_add(io->loop, __keepalive_timeout_cb, timeout_ms, 1);
  576. io->keepalive_timer->privdata = io;
  577. }
  578. io->keepalive_timeout = timeout_ms;
  579. }
  580. static void __heartbeat_timer_cb(htimer_t* timer) {
  581. hio_t* io = (hio_t*)timer->privdata;
  582. if (io && io->heartbeat_fn) {
  583. io->heartbeat_fn(io);
  584. }
  585. }
  586. void hio_set_heartbeat(hio_t* io, int interval_ms, hio_send_heartbeat_fn fn) {
  587. if (interval_ms <= 0) {
  588. // del
  589. hio_del_heartbeat_timer(io);
  590. return;
  591. }
  592. if (io->heartbeat_timer) {
  593. // reset
  594. ((struct htimeout_s*)io->heartbeat_timer)->timeout = interval_ms;
  595. htimer_reset(io->heartbeat_timer);
  596. } else {
  597. // add
  598. io->heartbeat_timer = htimer_add(io->loop, __heartbeat_timer_cb, interval_ms, INFINITE);
  599. io->heartbeat_timer->privdata = io;
  600. }
  601. io->heartbeat_interval = interval_ms;
  602. io->heartbeat_fn = fn;
  603. }
  604. //-----------------iobuf---------------------------------------------
  605. void hio_alloc_readbuf(hio_t* io, int len) {
  606. if (len > io->max_read_bufsize) {
  607. hloge("read bufsize > %u, close it!", io->max_read_bufsize);
  608. io->error = ERR_OVER_LIMIT;
  609. hio_close_async(io);
  610. return;
  611. }
  612. if (hio_is_alloced_readbuf(io)) {
  613. io->readbuf.base = (char*)hv_realloc(io->readbuf.base, len, io->readbuf.len);
  614. } else {
  615. HV_ALLOC(io->readbuf.base, len);
  616. }
  617. io->readbuf.len = len;
  618. io->alloced_readbuf = 1;
  619. io->small_readbytes_cnt = 0;
  620. }
  621. void hio_free_readbuf(hio_t* io) {
  622. if (hio_is_alloced_readbuf(io)) {
  623. HV_FREE(io->readbuf.base);
  624. io->alloced_readbuf = 0;
  625. // reset to loop->readbuf
  626. io->readbuf.base = io->loop->readbuf.base;
  627. io->readbuf.len = io->loop->readbuf.len;
  628. }
  629. }
  630. void hio_set_readbuf(hio_t* io, void* buf, size_t len) {
  631. assert(io && buf && len != 0);
  632. hio_free_readbuf(io);
  633. io->readbuf.base = (char*)buf;
  634. io->readbuf.len = len;
  635. io->readbuf.head = io->readbuf.tail = 0;
  636. io->alloced_readbuf = 0;
  637. }
  638. hio_readbuf_t* hio_get_readbuf(hio_t* io) {
  639. return &io->readbuf;
  640. }
  641. void hio_set_max_read_bufsize (hio_t* io, uint32_t size) {
  642. io->max_read_bufsize = size;
  643. }
  644. void hio_set_max_write_bufsize(hio_t* io, uint32_t size) {
  645. io->max_write_bufsize = size;
  646. }
  647. size_t hio_write_bufsize(hio_t* io) {
  648. return io->write_bufsize;
  649. }
  650. int hio_read_once (hio_t* io) {
  651. io->read_flags |= HIO_READ_ONCE;
  652. return hio_read_start(io);
  653. }
  654. int hio_read_until_length(hio_t* io, unsigned int len) {
  655. if (len == 0) return 0;
  656. if (io->readbuf.tail - io->readbuf.head >= len) {
  657. void* buf = io->readbuf.base + io->readbuf.head;
  658. io->readbuf.head += len;
  659. if (io->readbuf.head == io->readbuf.tail) {
  660. io->readbuf.head = io->readbuf.tail = 0;
  661. }
  662. hio_read_cb(io, buf, len);
  663. return len;
  664. }
  665. io->read_flags = HIO_READ_UNTIL_LENGTH;
  666. io->read_until_length = len;
  667. // NOTE: prepare readbuf
  668. if (hio_is_loop_readbuf(io) ||
  669. io->readbuf.len < len) {
  670. hio_alloc_readbuf(io, len);
  671. }
  672. return hio_read_once(io);
  673. }
  674. int hio_read_until_delim(hio_t* io, unsigned char delim) {
  675. if (io->readbuf.tail - io->readbuf.head > 0) {
  676. const unsigned char* sp = (const unsigned char*)io->readbuf.base + io->readbuf.head;
  677. const unsigned char* ep = (const unsigned char*)io->readbuf.base + io->readbuf.tail;
  678. const unsigned char* p = sp;
  679. while (p <= ep) {
  680. if (*p == delim) {
  681. int len = p - sp + 1;
  682. io->readbuf.head += len;
  683. if (io->readbuf.head == io->readbuf.tail) {
  684. io->readbuf.head = io->readbuf.tail = 0;
  685. }
  686. hio_read_cb(io, (void*)sp, len);
  687. return len;
  688. }
  689. ++p;
  690. }
  691. }
  692. io->read_flags = HIO_READ_UNTIL_DELIM;
  693. io->read_until_length = delim;
  694. // NOTE: prepare readbuf
  695. if (hio_is_loop_readbuf(io) ||
  696. io->readbuf.len < HLOOP_READ_BUFSIZE) {
  697. hio_alloc_readbuf(io, HLOOP_READ_BUFSIZE);
  698. }
  699. return hio_read_once(io);
  700. }
  701. int hio_read_remain(hio_t* io) {
  702. int remain = io->readbuf.tail - io->readbuf.head;
  703. if (remain > 0) {
  704. void* buf = io->readbuf.base + io->readbuf.head;
  705. io->readbuf.head = io->readbuf.tail = 0;
  706. hio_read_cb(io, buf, remain);
  707. }
  708. return remain;
  709. }
  710. //-----------------unpack---------------------------------------------
  711. void hio_set_unpack(hio_t* io, unpack_setting_t* setting) {
  712. hio_unset_unpack(io);
  713. if (setting == NULL) return;
  714. io->unpack_setting = setting;
  715. if (io->unpack_setting->package_max_length == 0) {
  716. io->unpack_setting->package_max_length = DEFAULT_PACKAGE_MAX_LENGTH;
  717. }
  718. if (io->unpack_setting->mode == UNPACK_BY_FIXED_LENGTH) {
  719. assert(io->unpack_setting->fixed_length != 0 &&
  720. io->unpack_setting->fixed_length <= io->unpack_setting->package_max_length);
  721. }
  722. else if (io->unpack_setting->mode == UNPACK_BY_DELIMITER) {
  723. if (io->unpack_setting->delimiter_bytes == 0) {
  724. io->unpack_setting->delimiter_bytes = strlen((char*)io->unpack_setting->delimiter);
  725. }
  726. }
  727. else if (io->unpack_setting->mode == UNPACK_BY_LENGTH_FIELD) {
  728. assert(io->unpack_setting->body_offset >=
  729. io->unpack_setting->length_field_offset +
  730. io->unpack_setting->length_field_bytes);
  731. }
  732. // NOTE: unpack must have own readbuf
  733. if (io->unpack_setting->mode == UNPACK_BY_FIXED_LENGTH) {
  734. io->readbuf.len = io->unpack_setting->fixed_length;
  735. } else {
  736. io->readbuf.len = MIN(HLOOP_READ_BUFSIZE, io->unpack_setting->package_max_length);
  737. }
  738. io->max_read_bufsize = io->unpack_setting->package_max_length;
  739. hio_alloc_readbuf(io, io->readbuf.len);
  740. }
  741. void hio_unset_unpack(hio_t* io) {
  742. if (io->unpack_setting) {
  743. io->unpack_setting = NULL;
  744. // NOTE: unpack has own readbuf
  745. hio_free_readbuf(io);
  746. }
  747. }
  748. //-----------------upstream---------------------------------------------
  749. void hio_read_upstream(hio_t* io) {
  750. hio_t* upstream_io = io->upstream_io;
  751. if (upstream_io) {
  752. hio_read(io);
  753. hio_read(upstream_io);
  754. }
  755. }
  756. void hio_write_upstream(hio_t* io, void* buf, int bytes) {
  757. hio_t* upstream_io = io->upstream_io;
  758. if (upstream_io) {
  759. hio_write(upstream_io, buf, bytes);
  760. }
  761. }
  762. void hio_close_upstream(hio_t* io) {
  763. hio_t* upstream_io = io->upstream_io;
  764. if (upstream_io) {
  765. hio_close(upstream_io);
  766. }
  767. }
  768. void hio_setup_upstream(hio_t* io1, hio_t* io2) {
  769. io1->upstream_io = io2;
  770. io2->upstream_io = io1;
  771. }
  772. hio_t* hio_get_upstream(hio_t* io) {
  773. return io->upstream_io;
  774. }
  775. hio_t* hio_setup_tcp_upstream(hio_t* io, const char* host, int port, int ssl) {
  776. hio_t* upstream_io = hio_create_socket(io->loop, host, port, HIO_TYPE_TCP, HIO_CLIENT_SIDE);
  777. if (upstream_io == NULL) return NULL;
  778. if (ssl) hio_enable_ssl(upstream_io);
  779. hio_setup_upstream(io, upstream_io);
  780. hio_setcb_read(io, hio_write_upstream);
  781. hio_setcb_read(upstream_io, hio_write_upstream);
  782. hio_setcb_close(io, hio_close_upstream);
  783. hio_setcb_close(upstream_io, hio_close_upstream);
  784. hio_setcb_connect(upstream_io, hio_read_upstream);
  785. hio_connect(upstream_io);
  786. return upstream_io;
  787. }
  788. hio_t* hio_setup_udp_upstream(hio_t* io, const char* host, int port) {
  789. hio_t* upstream_io = hio_create_socket(io->loop, host, port, HIO_TYPE_UDP, HIO_CLIENT_SIDE);
  790. if (upstream_io == NULL) return NULL;
  791. hio_setup_upstream(io, upstream_io);
  792. hio_setcb_read(io, hio_write_upstream);
  793. hio_setcb_read(upstream_io, hio_write_upstream);
  794. hio_read_upstream(io);
  795. return upstream_io;
  796. }