1
0

hloop.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #include "hthread.h"
  11. #define HLOOP_PAUSE_TIME 10 // ms
  12. #define HLOOP_MAX_BLOCK_TIME 100 // ms
  13. #define HLOOP_STAT_TIMEOUT 60000 // ms
  14. #define IO_ARRAY_INIT_SIZE 1024
  15. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  16. #define SOCKPAIR_WRITE_INDEX 0
  17. #define SOCKPAIR_READ_INDEX 1
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. // NOTE: Just mark it as destroy and remove from list.
  35. // Real deletion occurs after hloop_process_pendings.
  36. __hidle_del(idle);
  37. }
  38. EVENT_PENDING(idle);
  39. ++nidles;
  40. }
  41. return nidles;
  42. }
  43. static int hloop_process_timers(hloop_t* loop) {
  44. int ntimers = 0;
  45. htimer_t* timer = NULL;
  46. uint64_t now_hrtime = hloop_now_hrtime(loop);
  47. while (loop->timers.root) {
  48. // NOTE: root of minheap has min timeout.
  49. timer = TIMER_ENTRY(loop->timers.root);
  50. if (timer->next_timeout > now_hrtime) {
  51. break;
  52. }
  53. if (timer->repeat != INFINITE) {
  54. --timer->repeat;
  55. }
  56. if (timer->repeat == 0) {
  57. // NOTE: Just mark it as destroy and remove from heap.
  58. // Real deletion occurs after hloop_process_pendings.
  59. __htimer_del(timer);
  60. }
  61. else {
  62. // NOTE: calc next timeout, then re-insert heap.
  63. heap_dequeue(&loop->timers);
  64. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  65. while (timer->next_timeout <= now_hrtime) {
  66. timer->next_timeout += (uint64_t)((htimeout_t*)timer)->timeout * 1000;
  67. }
  68. }
  69. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  70. hperiod_t* period = (hperiod_t*)timer;
  71. timer->next_timeout = (uint64_t)cron_next_timeout(period->minute, period->hour, period->day,
  72. period->week, period->month) * 1000000;
  73. }
  74. heap_insert(&loop->timers, &timer->node);
  75. }
  76. EVENT_PENDING(timer);
  77. ++ntimers;
  78. }
  79. return ntimers;
  80. }
  81. static int hloop_process_ios(hloop_t* loop, int timeout) {
  82. // That is to call IO multiplexing function such as select, poll, epoll, etc.
  83. int nevents = iowatcher_poll_events(loop, timeout);
  84. if (nevents < 0) {
  85. hlogd("poll_events error=%d", -nevents);
  86. }
  87. return nevents < 0 ? 0 : nevents;
  88. }
  89. static int hloop_process_pendings(hloop_t* loop) {
  90. if (loop->npendings == 0) return 0;
  91. hevent_t* cur = NULL;
  92. hevent_t* next = NULL;
  93. int ncbs = 0;
  94. // NOTE: invoke event callback from high to low sorted by priority.
  95. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  96. cur = loop->pendings[i];
  97. while (cur) {
  98. next = cur->pending_next;
  99. if (cur->pending) {
  100. if (cur->active && cur->cb) {
  101. cur->cb(cur);
  102. ++ncbs;
  103. }
  104. cur->pending = 0;
  105. // NOTE: Now we can safely delete event marked as destroy.
  106. if (cur->destroy) {
  107. EVENT_DEL(cur);
  108. }
  109. }
  110. cur = next;
  111. }
  112. loop->pendings[i] = NULL;
  113. }
  114. loop->npendings = 0;
  115. return ncbs;
  116. }
  117. // hloop_process_ios -> hloop_process_timers -> hloop_process_idles -> hloop_process_pendings
  118. static int hloop_process_events(hloop_t* loop) {
  119. // ios -> timers -> idles
  120. int nios, ntimers, nidles;
  121. nios = ntimers = nidles = 0;
  122. // calc blocktime
  123. int32_t blocktime = HLOOP_MAX_BLOCK_TIME;
  124. if (loop->timers.root) {
  125. hloop_update_time(loop);
  126. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  127. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  128. if (blocktime_us <= 0) goto process_timers;
  129. blocktime = blocktime_us / 1000;
  130. ++blocktime;
  131. blocktime = MIN(blocktime, HLOOP_MAX_BLOCK_TIME);
  132. }
  133. if (loop->nios) {
  134. nios = hloop_process_ios(loop, blocktime);
  135. } else {
  136. hv_msleep(blocktime);
  137. }
  138. hloop_update_time(loop);
  139. // wakeup by hloop_stop
  140. if (loop->status == HLOOP_STATUS_STOP) {
  141. return 0;
  142. }
  143. process_timers:
  144. if (loop->ntimers) {
  145. ntimers = hloop_process_timers(loop);
  146. }
  147. int npendings = loop->npendings;
  148. if (npendings == 0) {
  149. if (loop->nidles) {
  150. nidles= hloop_process_idles(loop);
  151. }
  152. }
  153. int ncbs = hloop_process_pendings(loop);
  154. // printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  155. // blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  156. // loop->nactives, npendings, ncbs);
  157. return ncbs;
  158. }
  159. static void hloop_stat_timer_cb(htimer_t* timer) {
  160. hloop_t* loop = timer->loop;
  161. // hlog_set_level(LOG_LEVEL_DEBUG);
  162. hlogd("[loop] pid=%ld tid=%ld uptime=%lluus cnt=%llu nactives=%u nios=%u ntimers=%u nidles=%u",
  163. loop->pid, loop->tid, loop->cur_hrtime - loop->start_hrtime, loop->loop_cnt,
  164. loop->nactives, loop->nios, loop->ntimers, loop->nidles);
  165. }
  166. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  167. hloop_t* loop = io->loop;
  168. hevent_t* pev = NULL;
  169. hevent_t ev;
  170. for (int i = 0; i < readbytes; ++i) {
  171. hmutex_lock(&loop->custom_events_mutex);
  172. if (event_queue_empty(&loop->custom_events)) {
  173. goto unlock;
  174. }
  175. pev = event_queue_front(&loop->custom_events);
  176. if (pev == NULL) {
  177. goto unlock;
  178. }
  179. ev = *pev;
  180. event_queue_pop_front(&loop->custom_events);
  181. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  182. hmutex_unlock(&loop->custom_events_mutex);
  183. if (ev.cb) {
  184. ev.cb(&ev);
  185. }
  186. }
  187. return;
  188. unlock:
  189. hmutex_unlock(&loop->custom_events_mutex);
  190. }
  191. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  192. if (loop->sockpair[0] == -1 || loop->sockpair[1] == -1) {
  193. hlogw("socketpair not created!");
  194. return;
  195. }
  196. if (ev->loop == NULL) {
  197. ev->loop = loop;
  198. }
  199. if (ev->event_type == 0) {
  200. ev->event_type = HEVENT_TYPE_CUSTOM;
  201. }
  202. if (ev->event_id == 0) {
  203. ev->event_id = hloop_next_event_id();
  204. }
  205. hmutex_lock(&loop->custom_events_mutex);
  206. hwrite(loop, loop->sockpair[SOCKPAIR_WRITE_INDEX], "e", 1, NULL);
  207. event_queue_push_back(&loop->custom_events, ev);
  208. hmutex_unlock(&loop->custom_events_mutex);
  209. }
  210. static void hloop_init(hloop_t* loop) {
  211. #ifdef OS_WIN
  212. static int s_wsa_initialized = 0;
  213. if (s_wsa_initialized == 0) {
  214. s_wsa_initialized = 1;
  215. WSADATA wsadata;
  216. WSAStartup(MAKEWORD(2,2), &wsadata);
  217. }
  218. #endif
  219. #ifdef SIGPIPE
  220. // NOTE: if not ignore SIGPIPE, write twice when peer close will lead to exit process by SIGPIPE.
  221. signal(SIGPIPE, SIG_IGN);
  222. #endif
  223. loop->status = HLOOP_STATUS_STOP;
  224. loop->pid = hv_getpid();
  225. loop->tid = hv_gettid();
  226. // idles
  227. list_init(&loop->idles);
  228. // timers
  229. heap_init(&loop->timers, timers_compare);
  230. // ios
  231. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  232. // readbuf
  233. loop->readbuf.len = HLOOP_READ_BUFSIZE;
  234. HV_ALLOC(loop->readbuf.base, loop->readbuf.len);
  235. // iowatcher
  236. iowatcher_init(loop);
  237. // custom_events
  238. hmutex_init(&loop->custom_events_mutex);
  239. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  240. loop->sockpair[0] = loop->sockpair[1] = -1;
  241. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  242. hloge("socketpair create failed!");
  243. }
  244. // NOTE: init start_time here, because htimer_add use it.
  245. loop->start_ms = gettimeofday_ms();
  246. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  247. }
  248. static void hloop_cleanup(hloop_t* loop) {
  249. // pendings
  250. printd("cleanup pendings...\n");
  251. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  252. loop->pendings[i] = NULL;
  253. }
  254. // sockpair
  255. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  256. if (!hio_exists(loop, loop->sockpair[0])) {
  257. closesocket(loop->sockpair[0]);
  258. }
  259. if (!hio_exists(loop, loop->sockpair[1])) {
  260. closesocket(loop->sockpair[1]);
  261. }
  262. loop->sockpair[0] = loop->sockpair[1] = -1;
  263. }
  264. // ios
  265. printd("cleanup ios...\n");
  266. for (int i = 0; i < loop->ios.maxsize; ++i) {
  267. hio_t* io = loop->ios.ptr[i];
  268. if (io) {
  269. hio_free(io);
  270. }
  271. }
  272. io_array_cleanup(&loop->ios);
  273. // idles
  274. printd("cleanup idles...\n");
  275. struct list_node* node = loop->idles.next;
  276. hidle_t* idle;
  277. while (node != &loop->idles) {
  278. idle = IDLE_ENTRY(node);
  279. node = node->next;
  280. HV_FREE(idle);
  281. }
  282. list_init(&loop->idles);
  283. // timers
  284. printd("cleanup timers...\n");
  285. htimer_t* timer;
  286. while (loop->timers.root) {
  287. timer = TIMER_ENTRY(loop->timers.root);
  288. heap_dequeue(&loop->timers);
  289. HV_FREE(timer);
  290. }
  291. heap_init(&loop->timers, NULL);
  292. // readbuf
  293. if (loop->readbuf.base && loop->readbuf.len) {
  294. HV_FREE(loop->readbuf.base);
  295. loop->readbuf.base = NULL;
  296. loop->readbuf.len = 0;
  297. }
  298. // iowatcher
  299. iowatcher_cleanup(loop);
  300. // custom_events
  301. hmutex_lock(&loop->custom_events_mutex);
  302. event_queue_cleanup(&loop->custom_events);
  303. hmutex_unlock(&loop->custom_events_mutex);
  304. hmutex_destroy(&loop->custom_events_mutex);
  305. }
  306. hloop_t* hloop_new(int flags) {
  307. hloop_t* loop;
  308. HV_ALLOC_SIZEOF(loop);
  309. hloop_init(loop);
  310. loop->flags |= flags;
  311. return loop;
  312. }
  313. void hloop_free(hloop_t** pp) {
  314. if (pp && *pp) {
  315. hloop_cleanup(*pp);
  316. HV_FREE(*pp);
  317. *pp = NULL;
  318. }
  319. }
  320. // while (loop->status) { hloop_process_events(loop); }
  321. int hloop_run(hloop_t* loop) {
  322. if (loop == NULL) return -1;
  323. if (loop->status == HLOOP_STATUS_RUNNING) return -2;
  324. loop->status = HLOOP_STATUS_RUNNING;
  325. loop->pid = hv_getpid();
  326. loop->tid = hv_gettid();
  327. if (loop->intern_nevents == 0) {
  328. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  329. hread(loop, loop->sockpair[SOCKPAIR_READ_INDEX], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  330. ++loop->intern_nevents;
  331. }
  332. #ifdef DEBUG
  333. htimer_add(loop, hloop_stat_timer_cb, HLOOP_STAT_TIMEOUT, INFINITE);
  334. ++loop->intern_nevents;
  335. #endif
  336. }
  337. while (loop->status != HLOOP_STATUS_STOP) {
  338. if (loop->status == HLOOP_STATUS_PAUSE) {
  339. hv_msleep(HLOOP_PAUSE_TIME);
  340. hloop_update_time(loop);
  341. continue;
  342. }
  343. ++loop->loop_cnt;
  344. if (loop->nactives <= loop->intern_nevents && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  345. break;
  346. }
  347. hloop_process_events(loop);
  348. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  349. break;
  350. }
  351. }
  352. loop->status = HLOOP_STATUS_STOP;
  353. loop->end_hrtime = gethrtime_us();
  354. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  355. hloop_cleanup(loop);
  356. HV_FREE(loop);
  357. }
  358. return 0;
  359. }
  360. int hloop_wakeup(hloop_t* loop) {
  361. hevent_t ev;
  362. memset(&ev, 0, sizeof(ev));
  363. hloop_post_event(loop, &ev);
  364. return 0;
  365. }
  366. int hloop_stop(hloop_t* loop) {
  367. if (hv_gettid() != loop->tid) {
  368. hloop_wakeup(loop);
  369. }
  370. loop->status = HLOOP_STATUS_STOP;
  371. return 0;
  372. }
  373. int hloop_pause(hloop_t* loop) {
  374. if (loop->status == HLOOP_STATUS_RUNNING) {
  375. loop->status = HLOOP_STATUS_PAUSE;
  376. }
  377. return 0;
  378. }
  379. int hloop_resume(hloop_t* loop) {
  380. if (loop->status == HLOOP_STATUS_PAUSE) {
  381. loop->status = HLOOP_STATUS_RUNNING;
  382. }
  383. return 0;
  384. }
  385. hloop_status_e hloop_status(hloop_t* loop) {
  386. return loop->status;
  387. }
  388. void hloop_update_time(hloop_t* loop) {
  389. loop->cur_hrtime = gethrtime_us();
  390. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  391. // systemtime changed, we adjust start_ms
  392. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  393. }
  394. }
  395. uint64_t hloop_now(hloop_t* loop) {
  396. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  397. }
  398. uint64_t hloop_now_ms(hloop_t* loop) {
  399. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  400. }
  401. uint64_t hloop_now_hrtime(hloop_t* loop) {
  402. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  403. }
  404. long hloop_pid(hloop_t* loop) {
  405. return loop->pid;
  406. }
  407. long hloop_tid(hloop_t* loop) {
  408. return loop->tid;
  409. }
  410. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  411. loop->userdata = userdata;
  412. }
  413. void* hloop_userdata(hloop_t* loop) {
  414. return loop->userdata;
  415. }
  416. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  417. hidle_t* idle;
  418. HV_ALLOC_SIZEOF(idle);
  419. idle->event_type = HEVENT_TYPE_IDLE;
  420. idle->priority = HEVENT_LOWEST_PRIORITY;
  421. idle->repeat = repeat;
  422. list_add(&idle->node, &loop->idles);
  423. EVENT_ADD(loop, idle, cb);
  424. loop->nidles++;
  425. return idle;
  426. }
  427. static void __hidle_del(hidle_t* idle) {
  428. if (idle->destroy) return;
  429. idle->destroy = 1;
  430. list_del(&idle->node);
  431. idle->loop->nidles--;
  432. }
  433. void hidle_del(hidle_t* idle) {
  434. if (!idle->active) return;
  435. __hidle_del(idle);
  436. EVENT_DEL(idle);
  437. }
  438. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  439. if (timeout == 0) return NULL;
  440. htimeout_t* timer;
  441. HV_ALLOC_SIZEOF(timer);
  442. timer->event_type = HEVENT_TYPE_TIMEOUT;
  443. timer->priority = HEVENT_HIGHEST_PRIORITY;
  444. timer->repeat = repeat;
  445. timer->timeout = timeout;
  446. hloop_update_time(loop);
  447. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout*1000;
  448. // NOTE: Limit granularity to 100ms
  449. if (timeout >= 1000 && timeout % 100 == 0) {
  450. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  451. }
  452. heap_insert(&loop->timers, &timer->node);
  453. EVENT_ADD(loop, timer, cb);
  454. loop->ntimers++;
  455. return (htimer_t*)timer;
  456. }
  457. void htimer_reset(htimer_t* timer) {
  458. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  459. return;
  460. }
  461. hloop_t* loop = timer->loop;
  462. htimeout_t* timeout = (htimeout_t*)timer;
  463. if (timer->destroy) {
  464. loop->ntimers++;
  465. } else {
  466. heap_remove(&loop->timers, &timer->node);
  467. }
  468. if (timer->repeat == 0) {
  469. timer->repeat = 1;
  470. }
  471. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout->timeout*1000;
  472. // NOTE: Limit granularity to 100ms
  473. if (timeout->timeout >= 1000 && timeout->timeout % 100 == 0) {
  474. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  475. }
  476. heap_insert(&loop->timers, &timer->node);
  477. EVENT_RESET(timer);
  478. }
  479. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  480. int8_t minute, int8_t hour, int8_t day,
  481. int8_t week, int8_t month, uint32_t repeat) {
  482. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  483. return NULL;
  484. }
  485. hperiod_t* timer;
  486. HV_ALLOC_SIZEOF(timer);
  487. timer->event_type = HEVENT_TYPE_PERIOD;
  488. timer->priority = HEVENT_HIGH_PRIORITY;
  489. timer->repeat = repeat;
  490. timer->minute = minute;
  491. timer->hour = hour;
  492. timer->day = day;
  493. timer->month = month;
  494. timer->week = week;
  495. timer->next_timeout = (uint64_t)cron_next_timeout(minute, hour, day, week, month) * 1000000;
  496. heap_insert(&loop->timers, &timer->node);
  497. EVENT_ADD(loop, timer, cb);
  498. loop->ntimers++;
  499. return (htimer_t*)timer;
  500. }
  501. static void __htimer_del(htimer_t* timer) {
  502. if (timer->destroy) return;
  503. heap_remove(&timer->loop->timers, &timer->node);
  504. timer->loop->ntimers--;
  505. timer->destroy = 1;
  506. }
  507. void htimer_del(htimer_t* timer) {
  508. if (!timer->active) return;
  509. __htimer_del(timer);
  510. EVENT_DEL(timer);
  511. }
  512. const char* hio_engine() {
  513. #ifdef EVENT_SELECT
  514. return "select";
  515. #elif defined(EVENT_POLL)
  516. return "poll";
  517. #elif defined(EVENT_EPOLL)
  518. return "epoll";
  519. #elif defined(EVENT_KQUEUE)
  520. return "kqueue";
  521. #elif defined(EVENT_IOCP)
  522. return "iocp";
  523. #elif defined(EVENT_PORT)
  524. return "evport";
  525. #else
  526. return "noevent";
  527. #endif
  528. }
  529. hio_t* hio_get(hloop_t* loop, int fd) {
  530. if (fd >= loop->ios.maxsize) {
  531. int newsize = ceil2e(fd);
  532. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  533. }
  534. hio_t* io = loop->ios.ptr[fd];
  535. if (io == NULL) {
  536. HV_ALLOC_SIZEOF(io);
  537. hio_init(io);
  538. io->event_type = HEVENT_TYPE_IO;
  539. io->loop = loop;
  540. io->fd = fd;
  541. loop->ios.ptr[fd] = io;
  542. }
  543. if (!io->ready) {
  544. hio_ready(io);
  545. }
  546. return io;
  547. }
  548. void hio_detach(hio_t* io) {
  549. hloop_t* loop = io->loop;
  550. int fd = io->fd;
  551. assert(loop != NULL && fd < loop->ios.maxsize);
  552. loop->ios.ptr[fd] = NULL;
  553. }
  554. void hio_attach(hloop_t* loop, hio_t* io) {
  555. int fd = io->fd;
  556. if (fd >= loop->ios.maxsize) {
  557. int newsize = ceil2e(fd);
  558. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  559. }
  560. if (loop->ios.ptr[fd] == NULL) {
  561. io->loop = loop;
  562. // NOTE: use new_loop readbuf
  563. io->readbuf.base = loop->readbuf.base;
  564. io->readbuf.len = loop->readbuf.len;
  565. loop->ios.ptr[fd] = io;
  566. }
  567. }
  568. bool hio_exists(hloop_t* loop, int fd) {
  569. if (fd >= loop->ios.maxsize) {
  570. return false;
  571. }
  572. return loop->ios.ptr[fd] != NULL;
  573. }
  574. int hio_add(hio_t* io, hio_cb cb, int events) {
  575. printd("hio_add fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  576. #ifdef OS_WIN
  577. // Windows iowatcher not work on stdio
  578. if (io->fd < 3) return -1;
  579. #endif
  580. hloop_t* loop = io->loop;
  581. if (!io->active) {
  582. EVENT_ADD(loop, io, cb);
  583. loop->nios++;
  584. }
  585. if (!io->ready) {
  586. hio_ready(io);
  587. }
  588. if (cb) {
  589. io->cb = (hevent_cb)cb;
  590. }
  591. if (!(io->events & events)) {
  592. iowatcher_add_event(loop, io->fd, events);
  593. io->events |= events;
  594. }
  595. return 0;
  596. }
  597. int hio_del(hio_t* io, int events) {
  598. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  599. #ifdef OS_WIN
  600. // Windows iowatcher not work on stdio
  601. if (io->fd < 3) return -1;
  602. #endif
  603. if (!io->active) return -1;
  604. if (io->events & events) {
  605. iowatcher_del_event(io->loop, io->fd, events);
  606. io->events &= ~events;
  607. }
  608. if (io->events == 0) {
  609. io->loop->nios--;
  610. // NOTE: not EVENT_DEL, avoid free
  611. EVENT_INACTIVE(io);
  612. }
  613. return 0;
  614. }
  615. static void hio_close_event_cb(hevent_t* ev) {
  616. hio_t* io = (hio_t*)ev->userdata;
  617. uint32_t id = (uintptr_t)ev->privdata;
  618. if (io->id != id) return;
  619. hio_close(io);
  620. }
  621. int hio_close_async(hio_t* io) {
  622. hevent_t ev;
  623. memset(&ev, 0, sizeof(ev));
  624. ev.cb = hio_close_event_cb;
  625. ev.userdata = io;
  626. ev.privdata = (void*)(uintptr_t)io->id;
  627. ev.priority = HEVENT_HIGH_PRIORITY;
  628. hloop_post_event(io->loop, &ev);
  629. return 0;
  630. }
  631. //------------------high-level apis-------------------------------------------
  632. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  633. hio_t* io = hio_get(loop, fd);
  634. assert(io != NULL);
  635. if (buf && len) {
  636. io->readbuf.base = (char*)buf;
  637. io->readbuf.len = len;
  638. }
  639. if (read_cb) {
  640. io->read_cb = read_cb;
  641. }
  642. hio_read(io);
  643. return io;
  644. }
  645. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  646. hio_t* io = hio_get(loop, fd);
  647. assert(io != NULL);
  648. if (write_cb) {
  649. io->write_cb = write_cb;
  650. }
  651. hio_write(io, buf, len);
  652. return io;
  653. }
  654. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  655. hio_t* io = hio_get(loop, listenfd);
  656. assert(io != NULL);
  657. if (accept_cb) {
  658. io->accept_cb = accept_cb;
  659. }
  660. hio_accept(io);
  661. return io;
  662. }
  663. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  664. hio_t* io = hio_get(loop, connfd);
  665. assert(io != NULL);
  666. if (connect_cb) {
  667. io->connect_cb = connect_cb;
  668. }
  669. hio_connect(io);
  670. return io;
  671. }
  672. void hclose (hloop_t* loop, int fd) {
  673. hio_t* io = hio_get(loop, fd);
  674. assert(io != NULL);
  675. hio_close(io);
  676. }
  677. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  678. //hio_t* io = hio_get(loop, connfd);
  679. //assert(io != NULL);
  680. //io->recv = 1;
  681. //if (io->io_type != HIO_TYPE_SSL) {
  682. //io->io_type = HIO_TYPE_TCP;
  683. //}
  684. return hread(loop, connfd, buf, len, read_cb);
  685. }
  686. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  687. //hio_t* io = hio_get(loop, connfd);
  688. //assert(io != NULL);
  689. //io->send = 1;
  690. //if (io->io_type != HIO_TYPE_SSL) {
  691. //io->io_type = HIO_TYPE_TCP;
  692. //}
  693. return hwrite(loop, connfd, buf, len, write_cb);
  694. }
  695. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  696. //hio_t* io = hio_get(loop, sockfd);
  697. //assert(io != NULL);
  698. //io->recvfrom = 1;
  699. //io->io_type = HIO_TYPE_UDP;
  700. return hread(loop, sockfd, buf, len, read_cb);
  701. }
  702. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  703. //hio_t* io = hio_get(loop, sockfd);
  704. //assert(io != NULL);
  705. //io->sendto = 1;
  706. //io->io_type = HIO_TYPE_UDP;
  707. return hwrite(loop, sockfd, buf, len, write_cb);
  708. }
  709. //-----------------top-level apis---------------------------------------------
  710. hio_t* hio_create(hloop_t* loop, const char* host, int port, int type) {
  711. sockaddr_u peeraddr;
  712. memset(&peeraddr, 0, sizeof(peeraddr));
  713. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  714. if (ret != 0) {
  715. //printf("unknown host: %s\n", host);
  716. return NULL;
  717. }
  718. int connfd = socket(peeraddr.sa.sa_family, type, 0);
  719. if (connfd < 0) {
  720. perror("socket");
  721. return NULL;
  722. }
  723. hio_t* io = hio_get(loop, connfd);
  724. assert(io != NULL);
  725. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  726. return io;
  727. }
  728. hio_t* hloop_create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  729. int listenfd = Listen(port, host);
  730. if (listenfd < 0) {
  731. return NULL;
  732. }
  733. hio_t* io = haccept(loop, listenfd, accept_cb);
  734. if (io == NULL) {
  735. closesocket(listenfd);
  736. }
  737. return io;
  738. }
  739. hio_t* hloop_create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  740. hio_t* io = hio_create(loop, host, port, SOCK_STREAM);
  741. if (io == NULL) return NULL;
  742. hconnect(loop, io->fd, connect_cb);
  743. return io;
  744. }
  745. hio_t* hloop_create_ssl_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  746. hio_t* io = hloop_create_tcp_server(loop, host, port, accept_cb);
  747. if (io == NULL) return NULL;
  748. hio_enable_ssl(io);
  749. return io;
  750. }
  751. hio_t* hloop_create_ssl_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  752. hio_t* io = hio_create(loop, host, port, SOCK_STREAM);
  753. if (io == NULL) return NULL;
  754. hio_enable_ssl(io);
  755. hconnect(loop, io->fd, connect_cb);
  756. return io;
  757. }
  758. hio_t* hloop_create_udp_server(hloop_t* loop, const char* host, int port) {
  759. int bindfd = Bind(port, host, SOCK_DGRAM);
  760. if (bindfd < 0) {
  761. return NULL;
  762. }
  763. return hio_get(loop, bindfd);
  764. }
  765. hio_t* hloop_create_udp_client(hloop_t* loop, const char* host, int port) {
  766. return hio_create(loop, host, port, SOCK_DGRAM);
  767. }