1
0

hloop.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #include "hthread.h"
  11. #define HLOOP_PAUSE_TIME 10 // ms
  12. #define HLOOP_MAX_BLOCK_TIME 1000 // ms
  13. #define HLOOP_STAT_TIMEOUT 60000 // ms
  14. #define IO_ARRAY_INIT_SIZE 1024
  15. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  16. #define SOCKPAIR_WRITE_INDEX 0
  17. #define SOCKPAIR_READ_INDEX 1
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. __hidle_del(idle);
  35. }
  36. EVENT_PENDING(idle);
  37. ++nidles;
  38. }
  39. return nidles;
  40. }
  41. static int hloop_process_timers(hloop_t* loop) {
  42. int ntimers = 0;
  43. htimer_t* timer = NULL;
  44. uint64_t now_hrtime = hloop_now_hrtime(loop);
  45. while (loop->timers.root) {
  46. timer = TIMER_ENTRY(loop->timers.root);
  47. if (timer->next_timeout > now_hrtime) {
  48. break;
  49. }
  50. if (timer->repeat != INFINITE) {
  51. --timer->repeat;
  52. }
  53. if (timer->repeat == 0) {
  54. __htimer_del(timer);
  55. }
  56. else {
  57. heap_dequeue(&loop->timers);
  58. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  59. while (timer->next_timeout <= now_hrtime) {
  60. timer->next_timeout += ((htimeout_t*)timer)->timeout * 1000;
  61. }
  62. }
  63. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  64. hperiod_t* period = (hperiod_t*)timer;
  65. timer->next_timeout = cron_next_timeout(period->minute, period->hour, period->day,
  66. period->week, period->month) * 1000000;
  67. }
  68. heap_insert(&loop->timers, &timer->node);
  69. }
  70. EVENT_PENDING(timer);
  71. ++ntimers;
  72. }
  73. return ntimers;
  74. }
  75. static int hloop_process_ios(hloop_t* loop, int timeout) {
  76. int nevents = iowatcher_poll_events(loop, timeout);
  77. if (nevents < 0) {
  78. hloge("poll_events error=%d", -nevents);
  79. }
  80. return nevents < 0 ? 0 : nevents;
  81. }
  82. static int hloop_process_pendings(hloop_t* loop) {
  83. if (loop->npendings == 0) return 0;
  84. hevent_t* cur = NULL;
  85. hevent_t* next = NULL;
  86. int ncbs = 0;
  87. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  88. cur = loop->pendings[i];
  89. while (cur) {
  90. next = cur->pending_next;
  91. if (cur->pending) {
  92. if (cur->active && cur->cb) {
  93. cur->cb(cur);
  94. ++ncbs;
  95. }
  96. cur->pending = 0;
  97. if (cur->destroy) {
  98. EVENT_DEL(cur);
  99. }
  100. }
  101. cur = next;
  102. }
  103. loop->pendings[i] = NULL;
  104. }
  105. loop->npendings = 0;
  106. return ncbs;
  107. }
  108. static int hloop_process_events(hloop_t* loop) {
  109. // ios -> timers -> idles
  110. int nios, ntimers, nidles;
  111. nios = ntimers = nidles = 0;
  112. // calc blocktime
  113. int32_t blocktime = HLOOP_MAX_BLOCK_TIME;
  114. if (loop->timers.root) {
  115. hloop_update_time(loop);
  116. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  117. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  118. if (blocktime_us <= 0) goto process_timers;
  119. blocktime = blocktime_us / 1000;
  120. ++blocktime;
  121. blocktime = MIN(blocktime, HLOOP_MAX_BLOCK_TIME);
  122. }
  123. if (loop->nios) {
  124. nios = hloop_process_ios(loop, blocktime);
  125. }
  126. else {
  127. msleep(blocktime);
  128. }
  129. hloop_update_time(loop);
  130. // wakeup by hloop_stop
  131. if (loop->status == HLOOP_STATUS_STOP) {
  132. return 0;
  133. }
  134. process_timers:
  135. if (loop->ntimers) {
  136. ntimers = hloop_process_timers(loop);
  137. }
  138. int npendings = loop->npendings;
  139. if (npendings == 0) {
  140. if (loop->nidles) {
  141. nidles= hloop_process_idles(loop);
  142. }
  143. }
  144. int ncbs = hloop_process_pendings(loop);
  145. // printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  146. // blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  147. // loop->nactives, npendings, ncbs);
  148. return ncbs;
  149. }
  150. static void hloop_stat_timer_cb(htimer_t* timer) {
  151. hloop_t* loop = timer->loop;
  152. // hlog_set_level(LOG_LEVEL_DEBUG);
  153. hlogd("[loop] pid=%ld tid=%ld uptime=%lluus cnt=%llu nactives=%u nios=%d ntimers=%d nidles=%u",
  154. loop->pid, loop->tid, loop->cur_hrtime - loop->start_hrtime, loop->loop_cnt,
  155. loop->nactives, loop->nios, loop->ntimers, loop->nidles);
  156. }
  157. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  158. hloop_t* loop = io->loop;
  159. hevent_t* pev = NULL;
  160. hevent_t ev;
  161. for (int i = 0; i < readbytes; ++i) {
  162. hmutex_lock(&loop->custom_events_mutex);
  163. if (event_queue_empty(&loop->custom_events)) {
  164. goto unlock;
  165. }
  166. pev = event_queue_front(&loop->custom_events);
  167. if (pev == NULL) {
  168. goto unlock;
  169. }
  170. ev = *pev;
  171. event_queue_pop_front(&loop->custom_events);
  172. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  173. hmutex_unlock(&loop->custom_events_mutex);
  174. if (ev.cb) {
  175. ev.cb(&ev);
  176. }
  177. }
  178. return;
  179. unlock:
  180. hmutex_unlock(&loop->custom_events_mutex);
  181. }
  182. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  183. char buf = '1';
  184. if (loop->sockpair[0] == -1 || loop->sockpair[1] == -1) {
  185. hlogw("socketpair not created!");
  186. return;
  187. }
  188. if (ev->loop == NULL) {
  189. ev->loop = loop;
  190. }
  191. if (ev->event_type == 0) {
  192. ev->event_type = HEVENT_TYPE_CUSTOM;
  193. }
  194. if (ev->event_id == 0) {
  195. ev->event_id = hloop_next_event_id();
  196. }
  197. hmutex_lock(&loop->custom_events_mutex);
  198. hwrite(loop, loop->sockpair[SOCKPAIR_WRITE_INDEX], &buf, 1, NULL);
  199. event_queue_push_back(&loop->custom_events, ev);
  200. hmutex_unlock(&loop->custom_events_mutex);
  201. }
  202. static void hloop_init(hloop_t* loop) {
  203. #ifdef SIGPIPE
  204. // NOTE: if not ignore SIGPIPE, write twice when peer close will lead to exit process by SIGPIPE.
  205. signal(SIGPIPE, SIG_IGN);
  206. #endif
  207. loop->status = HLOOP_STATUS_STOP;
  208. loop->pid = hv_getpid();
  209. loop->tid = hv_gettid();
  210. // idles
  211. list_init(&loop->idles);
  212. // timers
  213. heap_init(&loop->timers, timers_compare);
  214. // ios
  215. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  216. // readbuf
  217. loop->readbuf.len = HLOOP_READ_BUFSIZE;
  218. HV_ALLOC(loop->readbuf.base, loop->readbuf.len);
  219. // iowatcher
  220. iowatcher_init(loop);
  221. // custom_events
  222. hmutex_init(&loop->custom_events_mutex);
  223. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  224. loop->sockpair[0] = loop->sockpair[1] = -1;
  225. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  226. hloge("socketpair create failed!");
  227. }
  228. // NOTE: init start_time here, because htimer_add use it.
  229. loop->start_ms = gettimeofday_ms();
  230. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  231. }
  232. static void hloop_cleanup(hloop_t* loop) {
  233. // pendings
  234. printd("cleanup pendings...\n");
  235. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  236. loop->pendings[i] = NULL;
  237. }
  238. // ios
  239. printd("cleanup ios...\n");
  240. for (int i = 0; i < loop->ios.maxsize; ++i) {
  241. hio_t* io = loop->ios.ptr[i];
  242. if (io) {
  243. hio_free(io);
  244. }
  245. }
  246. io_array_cleanup(&loop->ios);
  247. // idles
  248. printd("cleanup idles...\n");
  249. struct list_node* node = loop->idles.next;
  250. hidle_t* idle;
  251. while (node != &loop->idles) {
  252. idle = IDLE_ENTRY(node);
  253. node = node->next;
  254. HV_FREE(idle);
  255. }
  256. list_init(&loop->idles);
  257. // timers
  258. printd("cleanup timers...\n");
  259. htimer_t* timer;
  260. while (loop->timers.root) {
  261. timer = TIMER_ENTRY(loop->timers.root);
  262. heap_dequeue(&loop->timers);
  263. HV_FREE(timer);
  264. }
  265. heap_init(&loop->timers, NULL);
  266. // readbuf
  267. if (loop->readbuf.base && loop->readbuf.len) {
  268. HV_FREE(loop->readbuf.base);
  269. loop->readbuf.base = NULL;
  270. loop->readbuf.len = 0;
  271. }
  272. // iowatcher
  273. iowatcher_cleanup(loop);
  274. // custom_events
  275. hmutex_lock(&loop->custom_events_mutex);
  276. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  277. closesocket(loop->sockpair[0]);
  278. closesocket(loop->sockpair[1]);
  279. loop->sockpair[0] = loop->sockpair[1] = -1;
  280. }
  281. event_queue_cleanup(&loop->custom_events);
  282. hmutex_unlock(&loop->custom_events_mutex);
  283. hmutex_destroy(&loop->custom_events_mutex);
  284. }
  285. hloop_t* hloop_new(int flags) {
  286. hloop_t* loop;
  287. HV_ALLOC_SIZEOF(loop);
  288. hloop_init(loop);
  289. loop->flags |= flags;
  290. return loop;
  291. }
  292. void hloop_free(hloop_t** pp) {
  293. if (pp && *pp) {
  294. hloop_cleanup(*pp);
  295. HV_FREE(*pp);
  296. *pp = NULL;
  297. }
  298. }
  299. int hloop_run(hloop_t* loop) {
  300. loop->pid = hv_getpid();
  301. loop->tid = hv_gettid();
  302. // intern events
  303. int intern_events = 0;
  304. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  305. hread(loop, loop->sockpair[SOCKPAIR_READ_INDEX], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  306. ++intern_events;
  307. }
  308. #ifdef DEBUG
  309. htimer_add(loop, hloop_stat_timer_cb, HLOOP_STAT_TIMEOUT, INFINITE);
  310. ++intern_events;
  311. #endif
  312. loop->status = HLOOP_STATUS_RUNNING;
  313. while (loop->status != HLOOP_STATUS_STOP) {
  314. if (loop->status == HLOOP_STATUS_PAUSE) {
  315. msleep(HLOOP_PAUSE_TIME);
  316. hloop_update_time(loop);
  317. continue;
  318. }
  319. ++loop->loop_cnt;
  320. if (loop->nactives <= intern_events && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  321. break;
  322. }
  323. hloop_process_events(loop);
  324. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  325. break;
  326. }
  327. }
  328. loop->status = HLOOP_STATUS_STOP;
  329. loop->end_hrtime = gethrtime_us();
  330. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  331. hloop_cleanup(loop);
  332. HV_FREE(loop);
  333. }
  334. return 0;
  335. }
  336. int hloop_wakeup(hloop_t* loop) {
  337. hevent_t ev;
  338. memset(&ev, 0, sizeof(ev));
  339. hloop_post_event(loop, &ev);
  340. return 0;
  341. }
  342. static void hloop_stop_event_cb(hevent_t* ev) {
  343. ev->loop->status = HLOOP_STATUS_STOP;
  344. }
  345. int hloop_stop(hloop_t* loop) {
  346. loop->status = HLOOP_STATUS_STOP;
  347. if (hv_gettid() != loop->tid) {
  348. hevent_t ev;
  349. memset(&ev, 0, sizeof(ev));
  350. ev.priority = HEVENT_HIGHEST_PRIORITY;
  351. ev.cb = hloop_stop_event_cb;
  352. hloop_post_event(loop, &ev);
  353. }
  354. return 0;
  355. }
  356. int hloop_pause(hloop_t* loop) {
  357. if (loop->status == HLOOP_STATUS_RUNNING) {
  358. loop->status = HLOOP_STATUS_PAUSE;
  359. }
  360. return 0;
  361. }
  362. int hloop_resume(hloop_t* loop) {
  363. if (loop->status == HLOOP_STATUS_PAUSE) {
  364. loop->status = HLOOP_STATUS_RUNNING;
  365. }
  366. return 0;
  367. }
  368. hloop_status_e hloop_status(hloop_t* loop) {
  369. return loop->status;
  370. }
  371. void hloop_update_time(hloop_t* loop) {
  372. loop->cur_hrtime = gethrtime_us();
  373. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  374. // systemtime changed, we adjust start_ms
  375. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  376. }
  377. }
  378. uint64_t hloop_now(hloop_t* loop) {
  379. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  380. }
  381. uint64_t hloop_now_ms(hloop_t* loop) {
  382. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  383. }
  384. uint64_t hloop_now_hrtime(hloop_t* loop) {
  385. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  386. }
  387. long hloop_pid(hloop_t* loop) {
  388. return loop->pid;
  389. }
  390. long hloop_tid(hloop_t* loop) {
  391. return loop->tid;
  392. }
  393. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  394. loop->userdata = userdata;
  395. }
  396. void* hloop_userdata(hloop_t* loop) {
  397. return loop->userdata;
  398. }
  399. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  400. hidle_t* idle;
  401. HV_ALLOC_SIZEOF(idle);
  402. idle->event_type = HEVENT_TYPE_IDLE;
  403. idle->priority = HEVENT_LOWEST_PRIORITY;
  404. idle->repeat = repeat;
  405. list_add(&idle->node, &loop->idles);
  406. EVENT_ADD(loop, idle, cb);
  407. loop->nidles++;
  408. return idle;
  409. }
  410. static void __hidle_del(hidle_t* idle) {
  411. if (idle->destroy) return;
  412. idle->destroy = 1;
  413. list_del(&idle->node);
  414. idle->loop->nidles--;
  415. }
  416. void hidle_del(hidle_t* idle) {
  417. if (!idle->active) return;
  418. EVENT_DEL(idle);
  419. __hidle_del(idle);
  420. }
  421. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  422. if (timeout == 0) return NULL;
  423. htimeout_t* timer;
  424. HV_ALLOC_SIZEOF(timer);
  425. timer->event_type = HEVENT_TYPE_TIMEOUT;
  426. timer->priority = HEVENT_HIGHEST_PRIORITY;
  427. timer->repeat = repeat;
  428. timer->timeout = timeout;
  429. hloop_update_time(loop);
  430. timer->next_timeout = hloop_now_hrtime(loop) + timeout*1000;
  431. heap_insert(&loop->timers, &timer->node);
  432. EVENT_ADD(loop, timer, cb);
  433. loop->ntimers++;
  434. return (htimer_t*)timer;
  435. }
  436. void htimer_reset(htimer_t* timer) {
  437. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  438. return;
  439. }
  440. hloop_t* loop = timer->loop;
  441. htimeout_t* timeout = (htimeout_t*)timer;
  442. if (timer->destroy) {
  443. loop->ntimers++;
  444. } else {
  445. heap_remove(&loop->timers, &timer->node);
  446. }
  447. if (timer->repeat == 0) {
  448. timer->repeat = 1;
  449. }
  450. timer->next_timeout = hloop_now_hrtime(loop) + timeout->timeout*1000;
  451. heap_insert(&loop->timers, &timer->node);
  452. EVENT_RESET(timer);
  453. }
  454. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  455. int8_t minute, int8_t hour, int8_t day,
  456. int8_t week, int8_t month, uint32_t repeat) {
  457. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  458. return NULL;
  459. }
  460. hperiod_t* timer;
  461. HV_ALLOC_SIZEOF(timer);
  462. timer->event_type = HEVENT_TYPE_PERIOD;
  463. timer->priority = HEVENT_HIGH_PRIORITY;
  464. timer->repeat = repeat;
  465. timer->minute = minute;
  466. timer->hour = hour;
  467. timer->day = day;
  468. timer->month = month;
  469. timer->week = week;
  470. timer->next_timeout = cron_next_timeout(minute, hour, day, week, month) * 1000000;
  471. heap_insert(&loop->timers, &timer->node);
  472. EVENT_ADD(loop, timer, cb);
  473. loop->ntimers++;
  474. return (htimer_t*)timer;
  475. }
  476. static void __htimer_del(htimer_t* timer) {
  477. if (timer->destroy) return;
  478. heap_remove(&timer->loop->timers, &timer->node);
  479. timer->loop->ntimers--;
  480. timer->destroy = 1;
  481. }
  482. void htimer_del(htimer_t* timer) {
  483. if (!timer->active) return;
  484. __htimer_del(timer);
  485. EVENT_DEL(timer);
  486. }
  487. const char* hio_engine() {
  488. #ifdef EVENT_SELECT
  489. return "select";
  490. #elif defined(EVENT_POLL)
  491. return "poll";
  492. #elif defined(EVENT_EPOLL)
  493. return "epoll";
  494. #elif defined(EVENT_KQUEUE)
  495. return "kqueue";
  496. #elif defined(EVENT_IOCP)
  497. return "iocp";
  498. #elif defined(EVENT_PORT)
  499. return "evport";
  500. #else
  501. return "noevent";
  502. #endif
  503. }
  504. static void fill_io_type(hio_t* io) {
  505. int type = 0;
  506. socklen_t optlen = sizeof(int);
  507. int ret = getsockopt(io->fd, SOL_SOCKET, SO_TYPE, (char*)&type, &optlen);
  508. printd("getsockopt SO_TYPE fd=%d ret=%d type=%d errno=%d\n", io->fd, ret, type, socket_errno());
  509. if (ret == 0) {
  510. switch (type) {
  511. case SOCK_STREAM: io->io_type = HIO_TYPE_TCP; break;
  512. case SOCK_DGRAM: io->io_type = HIO_TYPE_UDP; break;
  513. case SOCK_RAW: io->io_type = HIO_TYPE_IP; break;
  514. default: io->io_type = HIO_TYPE_SOCKET; break;
  515. }
  516. }
  517. else if (socket_errno() == ENOTSOCK) {
  518. switch (io->fd) {
  519. case 0: io->io_type = HIO_TYPE_STDIN; break;
  520. case 1: io->io_type = HIO_TYPE_STDOUT; break;
  521. case 2: io->io_type = HIO_TYPE_STDERR; break;
  522. default: io->io_type = HIO_TYPE_FILE; break;
  523. }
  524. }
  525. else {
  526. io->io_type = HIO_TYPE_TCP;
  527. }
  528. }
  529. static void hio_socket_init(hio_t* io) {
  530. // nonblocking
  531. nonblocking(io->fd);
  532. // fill io->localaddr io->peeraddr
  533. if (io->localaddr == NULL) {
  534. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  535. }
  536. if (io->peeraddr == NULL) {
  537. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  538. }
  539. socklen_t addrlen = sizeof(sockaddr_u);
  540. int ret = getsockname(io->fd, io->localaddr, &addrlen);
  541. printd("getsockname fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  542. // NOTE:
  543. // tcp_server peeraddr set by accept
  544. // udp_server peeraddr set by recvfrom
  545. // tcp_client/udp_client peeraddr set by hio_setpeeraddr
  546. if (io->io_type == HIO_TYPE_TCP || io->io_type == HIO_TYPE_SSL) {
  547. // tcp acceptfd
  548. addrlen = sizeof(sockaddr_u);
  549. ret = getpeername(io->fd, io->peeraddr, &addrlen);
  550. printd("getpeername fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  551. }
  552. }
  553. void hio_init(hio_t* io) {
  554. // alloc localaddr,peeraddr when hio_socket_init
  555. /*
  556. if (io->localaddr == NULL) {
  557. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  558. }
  559. if (io->peeraddr == NULL) {
  560. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  561. }
  562. */
  563. // write_queue init when hwrite try_write failed
  564. // write_queue_init(&io->write_queue, 4);
  565. hrecursive_mutex_init(&io->write_mutex);
  566. }
  567. void hio_ready(hio_t* io) {
  568. if (io->ready) return;
  569. // flags
  570. io->ready = 1;
  571. io->closed = 0;
  572. io->accept = io->connect = io->connectex = 0;
  573. io->recv = io->send = 0;
  574. io->recvfrom = io->sendto = 0;
  575. io->close = 0;
  576. // public:
  577. io->io_type = HIO_TYPE_UNKNOWN;
  578. io->error = 0;
  579. io->events = io->revents = 0;
  580. // callbacks
  581. io->read_cb = NULL;
  582. io->write_cb = NULL;
  583. io->close_cb = NULL;
  584. io->accept_cb = NULL;
  585. io->connect_cb = NULL;
  586. // timers
  587. io->connect_timeout = 0;
  588. io->connect_timer = NULL;
  589. io->close_timeout = 0;
  590. io->close_timer = NULL;
  591. io->keepalive_timeout = 0;
  592. io->keepalive_timer = NULL;
  593. io->heartbeat_interval = 0;
  594. io->heartbeat_fn = NULL;
  595. io->heartbeat_timer = NULL;
  596. // private:
  597. io->event_index[0] = io->event_index[1] = -1;
  598. io->hovlp = NULL;
  599. io->ssl = NULL;
  600. // io_type
  601. fill_io_type(io);
  602. if (io->io_type & HIO_TYPE_SOCKET) {
  603. hio_socket_init(io);
  604. }
  605. }
  606. void hio_done(hio_t* io) {
  607. if (!io->ready) return;
  608. io->ready = 0;
  609. hio_del(io, HV_RDWR);
  610. offset_buf_t* pbuf = NULL;
  611. hrecursive_mutex_lock(&io->write_mutex);
  612. while (!write_queue_empty(&io->write_queue)) {
  613. pbuf = write_queue_front(&io->write_queue);
  614. HV_FREE(pbuf->base);
  615. write_queue_pop_front(&io->write_queue);
  616. }
  617. write_queue_cleanup(&io->write_queue);
  618. hrecursive_mutex_unlock(&io->write_mutex);
  619. }
  620. void hio_free(hio_t* io) {
  621. if (io == NULL) return;
  622. // NOTE: call hio_done to cleanup write_queue
  623. hio_done(io);
  624. // NOTE: call hio_close to call hclose_cb
  625. hio_close(io);
  626. hrecursive_mutex_destroy(&io->write_mutex);
  627. HV_FREE(io->localaddr);
  628. HV_FREE(io->peeraddr);
  629. HV_FREE(io);
  630. }
  631. hio_t* hio_get(hloop_t* loop, int fd) {
  632. if (fd >= loop->ios.maxsize) {
  633. int newsize = ceil2e(fd);
  634. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  635. }
  636. hio_t* io = loop->ios.ptr[fd];
  637. if (io == NULL) {
  638. HV_ALLOC_SIZEOF(io);
  639. hio_init(io);
  640. io->event_type = HEVENT_TYPE_IO;
  641. io->loop = loop;
  642. io->fd = fd;
  643. loop->ios.ptr[fd] = io;
  644. }
  645. if (!io->ready) {
  646. hio_ready(io);
  647. }
  648. return io;
  649. }
  650. int hio_add(hio_t* io, hio_cb cb, int events) {
  651. printd("hio_add fd=%d events=%d\n", io->fd, events);
  652. #ifdef OS_WIN
  653. // Windows iowatcher not work on stdio
  654. if (io->fd < 3) return -1;
  655. #endif
  656. hloop_t* loop = io->loop;
  657. if (!io->active) {
  658. EVENT_ADD(loop, io, cb);
  659. loop->nios++;
  660. }
  661. if (!io->ready) {
  662. hio_ready(io);
  663. }
  664. if (cb) {
  665. io->cb = (hevent_cb)cb;
  666. }
  667. iowatcher_add_event(loop, io->fd, events);
  668. io->events |= events;
  669. return 0;
  670. }
  671. int hio_del(hio_t* io, int events) {
  672. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  673. #ifdef OS_WIN
  674. // Windows iowatcher not work on stdio
  675. if (io->fd < 3) return -1;
  676. #endif
  677. if (!io->active) return -1;
  678. iowatcher_del_event(io->loop, io->fd, events);
  679. io->events &= ~events;
  680. if (io->events == 0) {
  681. io->loop->nios--;
  682. // NOTE: not EVENT_DEL, avoid free
  683. EVENT_INACTIVE(io);
  684. }
  685. return 0;
  686. }
  687. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  688. hio_t* io = hio_get(loop, fd);
  689. assert(io != NULL);
  690. io->readbuf.base = (char*)buf;
  691. io->readbuf.len = len;
  692. if (read_cb) {
  693. io->read_cb = read_cb;
  694. }
  695. hio_read(io);
  696. return io;
  697. }
  698. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  699. hio_t* io = hio_get(loop, fd);
  700. assert(io != NULL);
  701. if (write_cb) {
  702. io->write_cb = write_cb;
  703. }
  704. hio_write(io, buf, len);
  705. return io;
  706. }
  707. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  708. hio_t* io = hio_get(loop, listenfd);
  709. assert(io != NULL);
  710. if (accept_cb) {
  711. io->accept_cb = accept_cb;
  712. }
  713. hio_accept(io);
  714. return io;
  715. }
  716. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  717. hio_t* io = hio_get(loop, connfd);
  718. assert(io != NULL);
  719. if (connect_cb) {
  720. io->connect_cb = connect_cb;
  721. }
  722. hio_connect(io);
  723. return io;
  724. }
  725. void hclose (hloop_t* loop, int fd) {
  726. hio_t* io = hio_get(loop, fd);
  727. assert(io != NULL);
  728. hio_close(io);
  729. }
  730. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  731. //hio_t* io = hio_get(loop, connfd);
  732. //assert(io != NULL);
  733. //io->recv = 1;
  734. //if (io->io_type != HIO_TYPE_SSL) {
  735. //io->io_type = HIO_TYPE_TCP;
  736. //}
  737. return hread(loop, connfd, buf, len, read_cb);
  738. }
  739. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  740. //hio_t* io = hio_get(loop, connfd);
  741. //assert(io != NULL);
  742. //io->send = 1;
  743. //if (io->io_type != HIO_TYPE_SSL) {
  744. //io->io_type = HIO_TYPE_TCP;
  745. //}
  746. return hwrite(loop, connfd, buf, len, write_cb);
  747. }
  748. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  749. //hio_t* io = hio_get(loop, sockfd);
  750. //assert(io != NULL);
  751. //io->recvfrom = 1;
  752. //io->io_type = HIO_TYPE_UDP;
  753. return hread(loop, sockfd, buf, len, read_cb);
  754. }
  755. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  756. //hio_t* io = hio_get(loop, sockfd);
  757. //assert(io != NULL);
  758. //io->sendto = 1;
  759. //io->io_type = HIO_TYPE_UDP;
  760. return hwrite(loop, sockfd, buf, len, write_cb);
  761. }
  762. hio_t* hloop_create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  763. int listenfd = Listen(port, host);
  764. if (listenfd < 0) {
  765. return NULL;
  766. }
  767. hio_t* io = haccept(loop, listenfd, accept_cb);
  768. if (io == NULL) {
  769. closesocket(listenfd);
  770. }
  771. return io;
  772. }
  773. hio_t* hloop_create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  774. sockaddr_u peeraddr;
  775. memset(&peeraddr, 0, sizeof(peeraddr));
  776. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  777. if (ret != 0) {
  778. //printf("unknown host: %s\n", host);
  779. return NULL;
  780. }
  781. int connfd = socket(peeraddr.sa.sa_family, SOCK_STREAM, 0);
  782. if (connfd < 0) {
  783. perror("socket");
  784. return NULL;
  785. }
  786. hio_t* io = hio_get(loop, connfd);
  787. assert(io != NULL);
  788. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  789. hconnect(loop, connfd, connect_cb);
  790. return io;
  791. }
  792. // @server: socket -> bind -> hrecvfrom
  793. hio_t* hloop_create_udp_server(hloop_t* loop, const char* host, int port) {
  794. int bindfd = Bind(port, host, SOCK_DGRAM);
  795. if (bindfd < 0) {
  796. return NULL;
  797. }
  798. return hio_get(loop, bindfd);
  799. }
  800. // @client: Resolver -> socket -> hio_get -> hio_set_peeraddr
  801. hio_t* hloop_create_udp_client(hloop_t* loop, const char* host, int port) {
  802. sockaddr_u peeraddr;
  803. memset(&peeraddr, 0, sizeof(peeraddr));
  804. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  805. if (ret != 0) {
  806. //printf("unknown host: %s\n", host);
  807. return NULL;
  808. }
  809. int sockfd = socket(peeraddr.sa.sa_family, SOCK_DGRAM, 0);
  810. if (sockfd < 0) {
  811. perror("socket");
  812. return NULL;
  813. }
  814. hio_t* io = hio_get(loop, sockfd);
  815. assert(io != NULL);
  816. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  817. return io;
  818. }