1
0

hloop.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #include "hthread.h"
  11. #define HLOOP_PAUSE_TIME 10 // ms
  12. #define HLOOP_MAX_BLOCK_TIME 1000 // ms
  13. #define HLOOP_STAT_TIMEOUT 60000 // ms
  14. #define IO_ARRAY_INIT_SIZE 1024
  15. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  16. #define SOCKPAIR_WRITE_INDEX 0
  17. #define SOCKPAIR_READ_INDEX 1
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. __hidle_del(idle);
  35. }
  36. EVENT_PENDING(idle);
  37. ++nidles;
  38. }
  39. return nidles;
  40. }
  41. static int hloop_process_timers(hloop_t* loop) {
  42. int ntimers = 0;
  43. htimer_t* timer = NULL;
  44. uint64_t now_hrtime = hloop_now_hrtime(loop);
  45. while (loop->timers.root) {
  46. timer = TIMER_ENTRY(loop->timers.root);
  47. if (timer->next_timeout > now_hrtime) {
  48. break;
  49. }
  50. if (timer->repeat != INFINITE) {
  51. --timer->repeat;
  52. }
  53. if (timer->repeat == 0) {
  54. __htimer_del(timer);
  55. }
  56. else {
  57. heap_dequeue(&loop->timers);
  58. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  59. while (timer->next_timeout <= now_hrtime) {
  60. timer->next_timeout += ((htimeout_t*)timer)->timeout * 1000;
  61. }
  62. }
  63. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  64. hperiod_t* period = (hperiod_t*)timer;
  65. timer->next_timeout = cron_next_timeout(period->minute, period->hour, period->day,
  66. period->week, period->month) * 1000000;
  67. }
  68. heap_insert(&loop->timers, &timer->node);
  69. }
  70. EVENT_PENDING(timer);
  71. ++ntimers;
  72. }
  73. return ntimers;
  74. }
  75. static int hloop_process_ios(hloop_t* loop, int timeout) {
  76. int nevents = iowatcher_poll_events(loop, timeout);
  77. if (nevents < 0) {
  78. hloge("poll_events error=%d", -nevents);
  79. }
  80. return nevents < 0 ? 0 : nevents;
  81. }
  82. static int hloop_process_pendings(hloop_t* loop) {
  83. if (loop->npendings == 0) return 0;
  84. hevent_t* cur = NULL;
  85. hevent_t* next = NULL;
  86. int ncbs = 0;
  87. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  88. cur = loop->pendings[i];
  89. while (cur) {
  90. next = cur->pending_next;
  91. if (cur->pending) {
  92. if (cur->active && cur->cb) {
  93. cur->cb(cur);
  94. ++ncbs;
  95. }
  96. cur->pending = 0;
  97. if (cur->destroy) {
  98. EVENT_DEL(cur);
  99. }
  100. }
  101. cur = next;
  102. }
  103. loop->pendings[i] = NULL;
  104. }
  105. loop->npendings = 0;
  106. return ncbs;
  107. }
  108. static int hloop_process_events(hloop_t* loop) {
  109. // ios -> timers -> idles
  110. int nios, ntimers, nidles;
  111. nios = ntimers = nidles = 0;
  112. // calc blocktime
  113. int32_t blocktime = HLOOP_MAX_BLOCK_TIME;
  114. if (loop->timers.root) {
  115. hloop_update_time(loop);
  116. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  117. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  118. if (blocktime_us <= 0) goto process_timers;
  119. blocktime = blocktime_us / 1000;
  120. ++blocktime;
  121. blocktime = MIN(blocktime, HLOOP_MAX_BLOCK_TIME);
  122. }
  123. if (loop->nios) {
  124. nios = hloop_process_ios(loop, blocktime);
  125. }
  126. else {
  127. msleep(blocktime);
  128. }
  129. hloop_update_time(loop);
  130. // wakeup by hloop_stop
  131. if (loop->status == HLOOP_STATUS_STOP) {
  132. return 0;
  133. }
  134. process_timers:
  135. if (loop->ntimers) {
  136. ntimers = hloop_process_timers(loop);
  137. }
  138. int npendings = loop->npendings;
  139. if (npendings == 0) {
  140. if (loop->nidles) {
  141. nidles= hloop_process_idles(loop);
  142. }
  143. }
  144. int ncbs = hloop_process_pendings(loop);
  145. // printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  146. // blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  147. // loop->nactives, npendings, ncbs);
  148. return ncbs;
  149. }
  150. static void hloop_stat_timer_cb(htimer_t* timer) {
  151. hloop_t* loop = timer->loop;
  152. // hlog_set_level(LOG_LEVEL_DEBUG);
  153. hlogd("[loop] pid=%ld tid=%ld uptime=%lluus cnt=%llu nactives=%u nios=%d ntimers=%d nidles=%u",
  154. loop->pid, loop->tid, loop->cur_hrtime - loop->start_hrtime, loop->loop_cnt,
  155. loop->nactives, loop->nios, loop->ntimers, loop->nidles);
  156. }
  157. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  158. hloop_t* loop = io->loop;
  159. hevent_t* pev = NULL;
  160. hevent_t ev;
  161. for (int i = 0; i < readbytes; ++i) {
  162. hmutex_lock(&loop->custom_events_mutex);
  163. if (event_queue_empty(&loop->custom_events)) {
  164. goto unlock;
  165. }
  166. pev = event_queue_front(&loop->custom_events);
  167. if (pev == NULL) {
  168. goto unlock;
  169. }
  170. ev = *pev;
  171. event_queue_pop_front(&loop->custom_events);
  172. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  173. hmutex_unlock(&loop->custom_events_mutex);
  174. if (ev.cb) {
  175. ev.cb(&ev);
  176. }
  177. }
  178. return;
  179. unlock:
  180. hmutex_unlock(&loop->custom_events_mutex);
  181. }
  182. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  183. char buf = '1';
  184. if (loop->sockpair[0] == -1 || loop->sockpair[1] == -1) {
  185. hlogw("socketpair not created!");
  186. return;
  187. }
  188. if (ev->loop == NULL) {
  189. ev->loop = loop;
  190. }
  191. if (ev->event_type == 0) {
  192. ev->event_type = HEVENT_TYPE_CUSTOM;
  193. }
  194. if (ev->event_id == 0) {
  195. ev->event_id = hloop_next_event_id();
  196. }
  197. hmutex_lock(&loop->custom_events_mutex);
  198. hwrite(loop, loop->sockpair[SOCKPAIR_WRITE_INDEX], &buf, 1, NULL);
  199. event_queue_push_back(&loop->custom_events, ev);
  200. hmutex_unlock(&loop->custom_events_mutex);
  201. }
  202. static void hloop_init(hloop_t* loop) {
  203. #ifdef OS_WIN
  204. static int s_wsa_initialized = 0;
  205. if (s_wsa_initialized == 0) {
  206. s_wsa_initialized = 1;
  207. WSADATA wsadata;
  208. WSAStartup(MAKEWORD(2,2), &wsadata);
  209. }
  210. #endif
  211. #ifdef SIGPIPE
  212. // NOTE: if not ignore SIGPIPE, write twice when peer close will lead to exit process by SIGPIPE.
  213. signal(SIGPIPE, SIG_IGN);
  214. #endif
  215. loop->status = HLOOP_STATUS_STOP;
  216. loop->pid = hv_getpid();
  217. loop->tid = hv_gettid();
  218. // idles
  219. list_init(&loop->idles);
  220. // timers
  221. heap_init(&loop->timers, timers_compare);
  222. // ios
  223. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  224. // readbuf
  225. loop->readbuf.len = HLOOP_READ_BUFSIZE;
  226. HV_ALLOC(loop->readbuf.base, loop->readbuf.len);
  227. // iowatcher
  228. iowatcher_init(loop);
  229. // custom_events
  230. hmutex_init(&loop->custom_events_mutex);
  231. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  232. loop->sockpair[0] = loop->sockpair[1] = -1;
  233. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  234. hloge("socketpair create failed!");
  235. }
  236. // NOTE: init start_time here, because htimer_add use it.
  237. loop->start_ms = gettimeofday_ms();
  238. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  239. }
  240. static void hloop_cleanup(hloop_t* loop) {
  241. // pendings
  242. printd("cleanup pendings...\n");
  243. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  244. loop->pendings[i] = NULL;
  245. }
  246. // ios
  247. printd("cleanup ios...\n");
  248. for (int i = 0; i < loop->ios.maxsize; ++i) {
  249. hio_t* io = loop->ios.ptr[i];
  250. if (io) {
  251. hio_free(io);
  252. }
  253. }
  254. io_array_cleanup(&loop->ios);
  255. // idles
  256. printd("cleanup idles...\n");
  257. struct list_node* node = loop->idles.next;
  258. hidle_t* idle;
  259. while (node != &loop->idles) {
  260. idle = IDLE_ENTRY(node);
  261. node = node->next;
  262. HV_FREE(idle);
  263. }
  264. list_init(&loop->idles);
  265. // timers
  266. printd("cleanup timers...\n");
  267. htimer_t* timer;
  268. while (loop->timers.root) {
  269. timer = TIMER_ENTRY(loop->timers.root);
  270. heap_dequeue(&loop->timers);
  271. HV_FREE(timer);
  272. }
  273. heap_init(&loop->timers, NULL);
  274. // readbuf
  275. if (loop->readbuf.base && loop->readbuf.len) {
  276. HV_FREE(loop->readbuf.base);
  277. loop->readbuf.base = NULL;
  278. loop->readbuf.len = 0;
  279. }
  280. // iowatcher
  281. iowatcher_cleanup(loop);
  282. // custom_events
  283. hmutex_lock(&loop->custom_events_mutex);
  284. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  285. closesocket(loop->sockpair[0]);
  286. closesocket(loop->sockpair[1]);
  287. loop->sockpair[0] = loop->sockpair[1] = -1;
  288. }
  289. event_queue_cleanup(&loop->custom_events);
  290. hmutex_unlock(&loop->custom_events_mutex);
  291. hmutex_destroy(&loop->custom_events_mutex);
  292. }
  293. hloop_t* hloop_new(int flags) {
  294. hloop_t* loop;
  295. HV_ALLOC_SIZEOF(loop);
  296. hloop_init(loop);
  297. loop->flags |= flags;
  298. return loop;
  299. }
  300. void hloop_free(hloop_t** pp) {
  301. if (pp && *pp) {
  302. hloop_cleanup(*pp);
  303. HV_FREE(*pp);
  304. *pp = NULL;
  305. }
  306. }
  307. int hloop_run(hloop_t* loop) {
  308. loop->pid = hv_getpid();
  309. loop->tid = hv_gettid();
  310. // intern events
  311. int intern_events = 0;
  312. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  313. hread(loop, loop->sockpair[SOCKPAIR_READ_INDEX], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  314. ++intern_events;
  315. }
  316. #ifdef DEBUG
  317. htimer_add(loop, hloop_stat_timer_cb, HLOOP_STAT_TIMEOUT, INFINITE);
  318. ++intern_events;
  319. #endif
  320. loop->status = HLOOP_STATUS_RUNNING;
  321. while (loop->status != HLOOP_STATUS_STOP) {
  322. if (loop->status == HLOOP_STATUS_PAUSE) {
  323. msleep(HLOOP_PAUSE_TIME);
  324. hloop_update_time(loop);
  325. continue;
  326. }
  327. ++loop->loop_cnt;
  328. if (loop->nactives <= intern_events && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  329. break;
  330. }
  331. hloop_process_events(loop);
  332. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  333. break;
  334. }
  335. }
  336. loop->status = HLOOP_STATUS_STOP;
  337. loop->end_hrtime = gethrtime_us();
  338. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  339. hloop_cleanup(loop);
  340. HV_FREE(loop);
  341. }
  342. return 0;
  343. }
  344. int hloop_wakeup(hloop_t* loop) {
  345. hevent_t ev;
  346. memset(&ev, 0, sizeof(ev));
  347. hloop_post_event(loop, &ev);
  348. return 0;
  349. }
  350. static void hloop_stop_event_cb(hevent_t* ev) {
  351. ev->loop->status = HLOOP_STATUS_STOP;
  352. }
  353. int hloop_stop(hloop_t* loop) {
  354. loop->status = HLOOP_STATUS_STOP;
  355. if (hv_gettid() != loop->tid) {
  356. hevent_t ev;
  357. memset(&ev, 0, sizeof(ev));
  358. ev.priority = HEVENT_HIGHEST_PRIORITY;
  359. ev.cb = hloop_stop_event_cb;
  360. hloop_post_event(loop, &ev);
  361. }
  362. return 0;
  363. }
  364. int hloop_pause(hloop_t* loop) {
  365. if (loop->status == HLOOP_STATUS_RUNNING) {
  366. loop->status = HLOOP_STATUS_PAUSE;
  367. }
  368. return 0;
  369. }
  370. int hloop_resume(hloop_t* loop) {
  371. if (loop->status == HLOOP_STATUS_PAUSE) {
  372. loop->status = HLOOP_STATUS_RUNNING;
  373. }
  374. return 0;
  375. }
  376. hloop_status_e hloop_status(hloop_t* loop) {
  377. return loop->status;
  378. }
  379. void hloop_update_time(hloop_t* loop) {
  380. loop->cur_hrtime = gethrtime_us();
  381. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  382. // systemtime changed, we adjust start_ms
  383. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  384. }
  385. }
  386. uint64_t hloop_now(hloop_t* loop) {
  387. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  388. }
  389. uint64_t hloop_now_ms(hloop_t* loop) {
  390. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  391. }
  392. uint64_t hloop_now_hrtime(hloop_t* loop) {
  393. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  394. }
  395. long hloop_pid(hloop_t* loop) {
  396. return loop->pid;
  397. }
  398. long hloop_tid(hloop_t* loop) {
  399. return loop->tid;
  400. }
  401. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  402. loop->userdata = userdata;
  403. }
  404. void* hloop_userdata(hloop_t* loop) {
  405. return loop->userdata;
  406. }
  407. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  408. hidle_t* idle;
  409. HV_ALLOC_SIZEOF(idle);
  410. idle->event_type = HEVENT_TYPE_IDLE;
  411. idle->priority = HEVENT_LOWEST_PRIORITY;
  412. idle->repeat = repeat;
  413. list_add(&idle->node, &loop->idles);
  414. EVENT_ADD(loop, idle, cb);
  415. loop->nidles++;
  416. return idle;
  417. }
  418. static void __hidle_del(hidle_t* idle) {
  419. if (idle->destroy) return;
  420. idle->destroy = 1;
  421. list_del(&idle->node);
  422. idle->loop->nidles--;
  423. }
  424. void hidle_del(hidle_t* idle) {
  425. if (!idle->active) return;
  426. __hidle_del(idle);
  427. EVENT_DEL(idle);
  428. }
  429. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  430. if (timeout == 0) return NULL;
  431. htimeout_t* timer;
  432. HV_ALLOC_SIZEOF(timer);
  433. timer->event_type = HEVENT_TYPE_TIMEOUT;
  434. timer->priority = HEVENT_HIGHEST_PRIORITY;
  435. timer->repeat = repeat;
  436. timer->timeout = timeout;
  437. hloop_update_time(loop);
  438. timer->next_timeout = hloop_now_hrtime(loop) + timeout*1000;
  439. heap_insert(&loop->timers, &timer->node);
  440. EVENT_ADD(loop, timer, cb);
  441. loop->ntimers++;
  442. return (htimer_t*)timer;
  443. }
  444. void htimer_reset(htimer_t* timer) {
  445. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  446. return;
  447. }
  448. hloop_t* loop = timer->loop;
  449. htimeout_t* timeout = (htimeout_t*)timer;
  450. if (timer->destroy) {
  451. loop->ntimers++;
  452. } else {
  453. heap_remove(&loop->timers, &timer->node);
  454. }
  455. if (timer->repeat == 0) {
  456. timer->repeat = 1;
  457. }
  458. timer->next_timeout = hloop_now_hrtime(loop) + timeout->timeout*1000;
  459. heap_insert(&loop->timers, &timer->node);
  460. EVENT_RESET(timer);
  461. }
  462. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  463. int8_t minute, int8_t hour, int8_t day,
  464. int8_t week, int8_t month, uint32_t repeat) {
  465. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  466. return NULL;
  467. }
  468. hperiod_t* timer;
  469. HV_ALLOC_SIZEOF(timer);
  470. timer->event_type = HEVENT_TYPE_PERIOD;
  471. timer->priority = HEVENT_HIGH_PRIORITY;
  472. timer->repeat = repeat;
  473. timer->minute = minute;
  474. timer->hour = hour;
  475. timer->day = day;
  476. timer->month = month;
  477. timer->week = week;
  478. timer->next_timeout = cron_next_timeout(minute, hour, day, week, month) * 1000000;
  479. heap_insert(&loop->timers, &timer->node);
  480. EVENT_ADD(loop, timer, cb);
  481. loop->ntimers++;
  482. return (htimer_t*)timer;
  483. }
  484. static void __htimer_del(htimer_t* timer) {
  485. if (timer->destroy) return;
  486. heap_remove(&timer->loop->timers, &timer->node);
  487. timer->loop->ntimers--;
  488. timer->destroy = 1;
  489. }
  490. void htimer_del(htimer_t* timer) {
  491. if (!timer->active) return;
  492. __htimer_del(timer);
  493. EVENT_DEL(timer);
  494. }
  495. const char* hio_engine() {
  496. #ifdef EVENT_SELECT
  497. return "select";
  498. #elif defined(EVENT_POLL)
  499. return "poll";
  500. #elif defined(EVENT_EPOLL)
  501. return "epoll";
  502. #elif defined(EVENT_KQUEUE)
  503. return "kqueue";
  504. #elif defined(EVENT_IOCP)
  505. return "iocp";
  506. #elif defined(EVENT_PORT)
  507. return "evport";
  508. #else
  509. return "noevent";
  510. #endif
  511. }
  512. static void fill_io_type(hio_t* io) {
  513. int type = 0;
  514. socklen_t optlen = sizeof(int);
  515. int ret = getsockopt(io->fd, SOL_SOCKET, SO_TYPE, (char*)&type, &optlen);
  516. printd("getsockopt SO_TYPE fd=%d ret=%d type=%d errno=%d\n", io->fd, ret, type, socket_errno());
  517. if (ret == 0) {
  518. switch (type) {
  519. case SOCK_STREAM: io->io_type = HIO_TYPE_TCP; break;
  520. case SOCK_DGRAM: io->io_type = HIO_TYPE_UDP; break;
  521. case SOCK_RAW: io->io_type = HIO_TYPE_IP; break;
  522. default: io->io_type = HIO_TYPE_SOCKET; break;
  523. }
  524. }
  525. else if (socket_errno() == ENOTSOCK) {
  526. switch (io->fd) {
  527. case 0: io->io_type = HIO_TYPE_STDIN; break;
  528. case 1: io->io_type = HIO_TYPE_STDOUT; break;
  529. case 2: io->io_type = HIO_TYPE_STDERR; break;
  530. default: io->io_type = HIO_TYPE_FILE; break;
  531. }
  532. }
  533. else {
  534. io->io_type = HIO_TYPE_TCP;
  535. }
  536. }
  537. static void hio_socket_init(hio_t* io) {
  538. // nonblocking
  539. nonblocking(io->fd);
  540. // fill io->localaddr io->peeraddr
  541. if (io->localaddr == NULL) {
  542. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  543. }
  544. if (io->peeraddr == NULL) {
  545. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  546. }
  547. socklen_t addrlen = sizeof(sockaddr_u);
  548. int ret = getsockname(io->fd, io->localaddr, &addrlen);
  549. printd("getsockname fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  550. // NOTE:
  551. // tcp_server peeraddr set by accept
  552. // udp_server peeraddr set by recvfrom
  553. // tcp_client/udp_client peeraddr set by hio_setpeeraddr
  554. if (io->io_type == HIO_TYPE_TCP || io->io_type == HIO_TYPE_SSL) {
  555. // tcp acceptfd
  556. addrlen = sizeof(sockaddr_u);
  557. ret = getpeername(io->fd, io->peeraddr, &addrlen);
  558. printd("getpeername fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  559. }
  560. }
  561. void hio_init(hio_t* io) {
  562. // alloc localaddr,peeraddr when hio_socket_init
  563. /*
  564. if (io->localaddr == NULL) {
  565. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  566. }
  567. if (io->peeraddr == NULL) {
  568. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  569. }
  570. */
  571. // write_queue init when hwrite try_write failed
  572. // write_queue_init(&io->write_queue, 4);
  573. hrecursive_mutex_init(&io->write_mutex);
  574. }
  575. void hio_ready(hio_t* io) {
  576. if (io->ready) return;
  577. // flags
  578. io->ready = 1;
  579. io->closed = 0;
  580. io->accept = io->connect = io->connectex = 0;
  581. io->recv = io->send = 0;
  582. io->recvfrom = io->sendto = 0;
  583. io->close = 0;
  584. // public:
  585. io->id = hio_next_id();
  586. io->io_type = HIO_TYPE_UNKNOWN;
  587. io->error = 0;
  588. io->events = io->revents = 0;
  589. // callbacks
  590. io->read_cb = NULL;
  591. io->write_cb = NULL;
  592. io->close_cb = NULL;
  593. io->accept_cb = NULL;
  594. io->connect_cb = NULL;
  595. // timers
  596. io->connect_timeout = 0;
  597. io->connect_timer = NULL;
  598. io->close_timeout = 0;
  599. io->close_timer = NULL;
  600. io->keepalive_timeout = 0;
  601. io->keepalive_timer = NULL;
  602. io->heartbeat_interval = 0;
  603. io->heartbeat_fn = NULL;
  604. io->heartbeat_timer = NULL;
  605. // private:
  606. io->event_index[0] = io->event_index[1] = -1;
  607. io->hovlp = NULL;
  608. io->ssl = NULL;
  609. // io_type
  610. fill_io_type(io);
  611. if (io->io_type & HIO_TYPE_SOCKET) {
  612. hio_socket_init(io);
  613. }
  614. }
  615. void hio_done(hio_t* io) {
  616. if (!io->ready) return;
  617. io->ready = 0;
  618. hio_del(io, HV_RDWR);
  619. offset_buf_t* pbuf = NULL;
  620. hrecursive_mutex_lock(&io->write_mutex);
  621. while (!write_queue_empty(&io->write_queue)) {
  622. pbuf = write_queue_front(&io->write_queue);
  623. HV_FREE(pbuf->base);
  624. write_queue_pop_front(&io->write_queue);
  625. }
  626. write_queue_cleanup(&io->write_queue);
  627. hrecursive_mutex_unlock(&io->write_mutex);
  628. }
  629. void hio_free(hio_t* io) {
  630. if (io == NULL) return;
  631. // NOTE: call hio_done to cleanup write_queue
  632. hio_done(io);
  633. // NOTE: call hio_close to call hclose_cb
  634. hio_close(io);
  635. hrecursive_mutex_destroy(&io->write_mutex);
  636. HV_FREE(io->localaddr);
  637. HV_FREE(io->peeraddr);
  638. HV_FREE(io);
  639. }
  640. bool hio_is_opened(hio_t* io) {
  641. if (io == NULL) return false;
  642. return io->ready == 1 && io->closed == 0;
  643. }
  644. bool hio_is_closed(hio_t* io) {
  645. if (io == NULL) return true;
  646. return io->ready == 0 && io->closed == 1;
  647. }
  648. hio_t* hio_get(hloop_t* loop, int fd) {
  649. if (fd >= loop->ios.maxsize) {
  650. int newsize = ceil2e(fd);
  651. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  652. }
  653. hio_t* io = loop->ios.ptr[fd];
  654. if (io == NULL) {
  655. HV_ALLOC_SIZEOF(io);
  656. hio_init(io);
  657. io->event_type = HEVENT_TYPE_IO;
  658. io->loop = loop;
  659. io->fd = fd;
  660. loop->ios.ptr[fd] = io;
  661. }
  662. if (!io->ready) {
  663. hio_ready(io);
  664. }
  665. return io;
  666. }
  667. int hio_add(hio_t* io, hio_cb cb, int events) {
  668. printd("hio_add fd=%d events=%d\n", io->fd, events);
  669. #ifdef OS_WIN
  670. // Windows iowatcher not work on stdio
  671. if (io->fd < 3) return -1;
  672. #endif
  673. hloop_t* loop = io->loop;
  674. if (!io->active) {
  675. EVENT_ADD(loop, io, cb);
  676. loop->nios++;
  677. }
  678. if (!io->ready) {
  679. hio_ready(io);
  680. }
  681. if (cb) {
  682. io->cb = (hevent_cb)cb;
  683. }
  684. iowatcher_add_event(loop, io->fd, events);
  685. io->events |= events;
  686. return 0;
  687. }
  688. int hio_del(hio_t* io, int events) {
  689. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  690. #ifdef OS_WIN
  691. // Windows iowatcher not work on stdio
  692. if (io->fd < 3) return -1;
  693. #endif
  694. if (!io->active) return -1;
  695. if (io->events) {
  696. iowatcher_del_event(io->loop, io->fd, events);
  697. io->events &= ~events;
  698. }
  699. if (io->events == 0) {
  700. io->loop->nios--;
  701. // NOTE: not EVENT_DEL, avoid free
  702. EVENT_INACTIVE(io);
  703. }
  704. return 0;
  705. }
  706. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  707. hio_t* io = hio_get(loop, fd);
  708. assert(io != NULL);
  709. io->readbuf.base = (char*)buf;
  710. io->readbuf.len = len;
  711. if (read_cb) {
  712. io->read_cb = read_cb;
  713. }
  714. hio_read(io);
  715. return io;
  716. }
  717. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  718. hio_t* io = hio_get(loop, fd);
  719. assert(io != NULL);
  720. if (write_cb) {
  721. io->write_cb = write_cb;
  722. }
  723. hio_write(io, buf, len);
  724. return io;
  725. }
  726. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  727. hio_t* io = hio_get(loop, listenfd);
  728. assert(io != NULL);
  729. if (accept_cb) {
  730. io->accept_cb = accept_cb;
  731. }
  732. hio_accept(io);
  733. return io;
  734. }
  735. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  736. hio_t* io = hio_get(loop, connfd);
  737. assert(io != NULL);
  738. if (connect_cb) {
  739. io->connect_cb = connect_cb;
  740. }
  741. hio_connect(io);
  742. return io;
  743. }
  744. void hclose (hloop_t* loop, int fd) {
  745. hio_t* io = hio_get(loop, fd);
  746. assert(io != NULL);
  747. hio_close(io);
  748. }
  749. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  750. //hio_t* io = hio_get(loop, connfd);
  751. //assert(io != NULL);
  752. //io->recv = 1;
  753. //if (io->io_type != HIO_TYPE_SSL) {
  754. //io->io_type = HIO_TYPE_TCP;
  755. //}
  756. return hread(loop, connfd, buf, len, read_cb);
  757. }
  758. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  759. //hio_t* io = hio_get(loop, connfd);
  760. //assert(io != NULL);
  761. //io->send = 1;
  762. //if (io->io_type != HIO_TYPE_SSL) {
  763. //io->io_type = HIO_TYPE_TCP;
  764. //}
  765. return hwrite(loop, connfd, buf, len, write_cb);
  766. }
  767. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  768. //hio_t* io = hio_get(loop, sockfd);
  769. //assert(io != NULL);
  770. //io->recvfrom = 1;
  771. //io->io_type = HIO_TYPE_UDP;
  772. return hread(loop, sockfd, buf, len, read_cb);
  773. }
  774. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  775. //hio_t* io = hio_get(loop, sockfd);
  776. //assert(io != NULL);
  777. //io->sendto = 1;
  778. //io->io_type = HIO_TYPE_UDP;
  779. return hwrite(loop, sockfd, buf, len, write_cb);
  780. }
  781. hio_t* hloop_create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  782. int listenfd = Listen(port, host);
  783. if (listenfd < 0) {
  784. return NULL;
  785. }
  786. hio_t* io = haccept(loop, listenfd, accept_cb);
  787. if (io == NULL) {
  788. closesocket(listenfd);
  789. }
  790. return io;
  791. }
  792. hio_t* hloop_create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  793. sockaddr_u peeraddr;
  794. memset(&peeraddr, 0, sizeof(peeraddr));
  795. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  796. if (ret != 0) {
  797. //printf("unknown host: %s\n", host);
  798. return NULL;
  799. }
  800. int connfd = socket(peeraddr.sa.sa_family, SOCK_STREAM, 0);
  801. if (connfd < 0) {
  802. perror("socket");
  803. return NULL;
  804. }
  805. hio_t* io = hio_get(loop, connfd);
  806. assert(io != NULL);
  807. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  808. hconnect(loop, connfd, connect_cb);
  809. return io;
  810. }
  811. // @server: socket -> bind -> hrecvfrom
  812. hio_t* hloop_create_udp_server(hloop_t* loop, const char* host, int port) {
  813. int bindfd = Bind(port, host, SOCK_DGRAM);
  814. if (bindfd < 0) {
  815. return NULL;
  816. }
  817. return hio_get(loop, bindfd);
  818. }
  819. // @client: Resolver -> socket -> hio_get -> hio_set_peeraddr
  820. hio_t* hloop_create_udp_client(hloop_t* loop, const char* host, int port) {
  821. sockaddr_u peeraddr;
  822. memset(&peeraddr, 0, sizeof(peeraddr));
  823. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  824. if (ret != 0) {
  825. //printf("unknown host: %s\n", host);
  826. return NULL;
  827. }
  828. int sockfd = socket(peeraddr.sa.sa_family, SOCK_DGRAM, 0);
  829. if (sockfd < 0) {
  830. perror("socket");
  831. return NULL;
  832. }
  833. hio_t* io = hio_get(loop, sockfd);
  834. assert(io != NULL);
  835. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  836. return io;
  837. }