hloop.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #include "hthread.h"
  11. #define HLOOP_PAUSE_TIME 10 // ms
  12. #define HLOOP_MAX_BLOCK_TIME 100 // ms
  13. #define HLOOP_STAT_TIMEOUT 60000 // ms
  14. #define IO_ARRAY_INIT_SIZE 1024
  15. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  16. #define SOCKPAIR_WRITE_INDEX 0
  17. #define SOCKPAIR_READ_INDEX 1
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. // NOTE: Just mark it as destroy and remove from list.
  35. // Real deletion occurs after hloop_process_pendings.
  36. __hidle_del(idle);
  37. }
  38. EVENT_PENDING(idle);
  39. ++nidles;
  40. }
  41. return nidles;
  42. }
  43. static int hloop_process_timers(hloop_t* loop) {
  44. int ntimers = 0;
  45. htimer_t* timer = NULL;
  46. uint64_t now_hrtime = hloop_now_hrtime(loop);
  47. while (loop->timers.root) {
  48. // NOTE: root of minheap has min timeout.
  49. timer = TIMER_ENTRY(loop->timers.root);
  50. if (timer->next_timeout > now_hrtime) {
  51. break;
  52. }
  53. if (timer->repeat != INFINITE) {
  54. --timer->repeat;
  55. }
  56. if (timer->repeat == 0) {
  57. // NOTE: Just mark it as destroy and remove from heap.
  58. // Real deletion occurs after hloop_process_pendings.
  59. __htimer_del(timer);
  60. }
  61. else {
  62. // NOTE: calc next timeout, then re-insert heap.
  63. heap_dequeue(&loop->timers);
  64. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  65. while (timer->next_timeout <= now_hrtime) {
  66. timer->next_timeout += (uint64_t)((htimeout_t*)timer)->timeout * 1000;
  67. }
  68. }
  69. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  70. hperiod_t* period = (hperiod_t*)timer;
  71. timer->next_timeout = (uint64_t)cron_next_timeout(period->minute, period->hour, period->day,
  72. period->week, period->month) * 1000000;
  73. }
  74. heap_insert(&loop->timers, &timer->node);
  75. }
  76. EVENT_PENDING(timer);
  77. ++ntimers;
  78. }
  79. return ntimers;
  80. }
  81. static int hloop_process_ios(hloop_t* loop, int timeout) {
  82. // That is to call IO multiplexing function such as select, poll, epoll, etc.
  83. int nevents = iowatcher_poll_events(loop, timeout);
  84. if (nevents < 0) {
  85. hlogd("poll_events error=%d", -nevents);
  86. }
  87. return nevents < 0 ? 0 : nevents;
  88. }
  89. static int hloop_process_pendings(hloop_t* loop) {
  90. if (loop->npendings == 0) return 0;
  91. hevent_t* cur = NULL;
  92. hevent_t* next = NULL;
  93. int ncbs = 0;
  94. // NOTE: invoke event callback from high to low sorted by priority.
  95. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  96. cur = loop->pendings[i];
  97. while (cur) {
  98. next = cur->pending_next;
  99. if (cur->pending) {
  100. if (cur->active && cur->cb) {
  101. cur->cb(cur);
  102. ++ncbs;
  103. }
  104. cur->pending = 0;
  105. // NOTE: Now we can safely delete event marked as destroy.
  106. if (cur->destroy) {
  107. EVENT_DEL(cur);
  108. }
  109. }
  110. cur = next;
  111. }
  112. loop->pendings[i] = NULL;
  113. }
  114. loop->npendings = 0;
  115. return ncbs;
  116. }
  117. // hloop_process_ios -> hloop_process_timers -> hloop_process_idles -> hloop_process_pendings
  118. static int hloop_process_events(hloop_t* loop) {
  119. // ios -> timers -> idles
  120. int nios, ntimers, nidles;
  121. nios = ntimers = nidles = 0;
  122. // calc blocktime
  123. int32_t blocktime = HLOOP_MAX_BLOCK_TIME;
  124. if (loop->timers.root) {
  125. hloop_update_time(loop);
  126. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  127. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  128. if (blocktime_us <= 0) goto process_timers;
  129. blocktime = blocktime_us / 1000;
  130. ++blocktime;
  131. blocktime = MIN(blocktime, HLOOP_MAX_BLOCK_TIME);
  132. }
  133. if (loop->nios) {
  134. nios = hloop_process_ios(loop, blocktime);
  135. } else {
  136. hv_msleep(blocktime);
  137. }
  138. hloop_update_time(loop);
  139. // wakeup by hloop_stop
  140. if (loop->status == HLOOP_STATUS_STOP) {
  141. return 0;
  142. }
  143. process_timers:
  144. if (loop->ntimers) {
  145. ntimers = hloop_process_timers(loop);
  146. }
  147. int npendings = loop->npendings;
  148. if (npendings == 0) {
  149. if (loop->nidles) {
  150. nidles= hloop_process_idles(loop);
  151. }
  152. }
  153. int ncbs = hloop_process_pendings(loop);
  154. // printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  155. // blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  156. // loop->nactives, npendings, ncbs);
  157. return ncbs;
  158. }
  159. static void hloop_stat_timer_cb(htimer_t* timer) {
  160. hloop_t* loop = timer->loop;
  161. // hlog_set_level(LOG_LEVEL_DEBUG);
  162. hlogd("[loop] pid=%ld tid=%ld uptime=%lluus cnt=%llu nactives=%u nios=%u ntimers=%u nidles=%u",
  163. loop->pid, loop->tid, loop->cur_hrtime - loop->start_hrtime, loop->loop_cnt,
  164. loop->nactives, loop->nios, loop->ntimers, loop->nidles);
  165. }
  166. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  167. hloop_t* loop = io->loop;
  168. hevent_t* pev = NULL;
  169. hevent_t ev;
  170. for (int i = 0; i < readbytes; ++i) {
  171. hmutex_lock(&loop->custom_events_mutex);
  172. if (event_queue_empty(&loop->custom_events)) {
  173. goto unlock;
  174. }
  175. pev = event_queue_front(&loop->custom_events);
  176. if (pev == NULL) {
  177. goto unlock;
  178. }
  179. ev = *pev;
  180. event_queue_pop_front(&loop->custom_events);
  181. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  182. hmutex_unlock(&loop->custom_events_mutex);
  183. if (ev.cb) {
  184. ev.cb(&ev);
  185. }
  186. }
  187. return;
  188. unlock:
  189. hmutex_unlock(&loop->custom_events_mutex);
  190. }
  191. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  192. if (loop->sockpair[0] == -1 || loop->sockpair[1] == -1) {
  193. hlogw("socketpair not created!");
  194. return;
  195. }
  196. if (ev->loop == NULL) {
  197. ev->loop = loop;
  198. }
  199. if (ev->event_type == 0) {
  200. ev->event_type = HEVENT_TYPE_CUSTOM;
  201. }
  202. if (ev->event_id == 0) {
  203. ev->event_id = hloop_next_event_id();
  204. }
  205. hmutex_lock(&loop->custom_events_mutex);
  206. hwrite(loop, loop->sockpair[SOCKPAIR_WRITE_INDEX], "e", 1, NULL);
  207. event_queue_push_back(&loop->custom_events, ev);
  208. hmutex_unlock(&loop->custom_events_mutex);
  209. }
  210. static void hloop_init(hloop_t* loop) {
  211. #ifdef OS_WIN
  212. static int s_wsa_initialized = 0;
  213. if (s_wsa_initialized == 0) {
  214. s_wsa_initialized = 1;
  215. WSADATA wsadata;
  216. WSAStartup(MAKEWORD(2,2), &wsadata);
  217. }
  218. #endif
  219. #ifdef SIGPIPE
  220. // NOTE: if not ignore SIGPIPE, write twice when peer close will lead to exit process by SIGPIPE.
  221. signal(SIGPIPE, SIG_IGN);
  222. #endif
  223. loop->status = HLOOP_STATUS_STOP;
  224. loop->pid = hv_getpid();
  225. loop->tid = hv_gettid();
  226. // idles
  227. list_init(&loop->idles);
  228. // timers
  229. heap_init(&loop->timers, timers_compare);
  230. // ios
  231. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  232. // readbuf
  233. loop->readbuf.len = HLOOP_READ_BUFSIZE;
  234. HV_ALLOC(loop->readbuf.base, loop->readbuf.len);
  235. // iowatcher
  236. iowatcher_init(loop);
  237. // custom_events
  238. hmutex_init(&loop->custom_events_mutex);
  239. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  240. loop->sockpair[0] = loop->sockpair[1] = -1;
  241. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  242. hloge("socketpair create failed!");
  243. }
  244. // NOTE: init start_time here, because htimer_add use it.
  245. loop->start_ms = gettimeofday_ms();
  246. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  247. }
  248. static void hloop_cleanup(hloop_t* loop) {
  249. // pendings
  250. printd("cleanup pendings...\n");
  251. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  252. loop->pendings[i] = NULL;
  253. }
  254. // ios
  255. printd("cleanup ios...\n");
  256. for (int i = 0; i < loop->ios.maxsize; ++i) {
  257. hio_t* io = loop->ios.ptr[i];
  258. if (io) {
  259. hio_free(io);
  260. }
  261. }
  262. io_array_cleanup(&loop->ios);
  263. // idles
  264. printd("cleanup idles...\n");
  265. struct list_node* node = loop->idles.next;
  266. hidle_t* idle;
  267. while (node != &loop->idles) {
  268. idle = IDLE_ENTRY(node);
  269. node = node->next;
  270. HV_FREE(idle);
  271. }
  272. list_init(&loop->idles);
  273. // timers
  274. printd("cleanup timers...\n");
  275. htimer_t* timer;
  276. while (loop->timers.root) {
  277. timer = TIMER_ENTRY(loop->timers.root);
  278. heap_dequeue(&loop->timers);
  279. HV_FREE(timer);
  280. }
  281. heap_init(&loop->timers, NULL);
  282. // readbuf
  283. if (loop->readbuf.base && loop->readbuf.len) {
  284. HV_FREE(loop->readbuf.base);
  285. loop->readbuf.base = NULL;
  286. loop->readbuf.len = 0;
  287. }
  288. // iowatcher
  289. iowatcher_cleanup(loop);
  290. // custom_events
  291. hmutex_lock(&loop->custom_events_mutex);
  292. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  293. closesocket(loop->sockpair[0]);
  294. closesocket(loop->sockpair[1]);
  295. loop->sockpair[0] = loop->sockpair[1] = -1;
  296. }
  297. event_queue_cleanup(&loop->custom_events);
  298. hmutex_unlock(&loop->custom_events_mutex);
  299. hmutex_destroy(&loop->custom_events_mutex);
  300. }
  301. hloop_t* hloop_new(int flags) {
  302. hloop_t* loop;
  303. HV_ALLOC_SIZEOF(loop);
  304. hloop_init(loop);
  305. loop->flags |= flags;
  306. return loop;
  307. }
  308. void hloop_free(hloop_t** pp) {
  309. if (pp && *pp) {
  310. hloop_cleanup(*pp);
  311. HV_FREE(*pp);
  312. *pp = NULL;
  313. }
  314. }
  315. // while (loop->status) { hloop_process_events(loop); }
  316. int hloop_run(hloop_t* loop) {
  317. if (loop == NULL) return -1;
  318. if (loop->status == HLOOP_STATUS_RUNNING) return -2;
  319. loop->status = HLOOP_STATUS_RUNNING;
  320. loop->pid = hv_getpid();
  321. loop->tid = hv_gettid();
  322. if (loop->intern_nevents == 0) {
  323. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  324. hread(loop, loop->sockpair[SOCKPAIR_READ_INDEX], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  325. ++loop->intern_nevents;
  326. }
  327. #ifdef DEBUG
  328. htimer_add(loop, hloop_stat_timer_cb, HLOOP_STAT_TIMEOUT, INFINITE);
  329. ++loop->intern_nevents;
  330. #endif
  331. }
  332. while (loop->status != HLOOP_STATUS_STOP) {
  333. if (loop->status == HLOOP_STATUS_PAUSE) {
  334. hv_msleep(HLOOP_PAUSE_TIME);
  335. hloop_update_time(loop);
  336. continue;
  337. }
  338. ++loop->loop_cnt;
  339. if (loop->nactives <= loop->intern_nevents && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  340. break;
  341. }
  342. hloop_process_events(loop);
  343. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  344. break;
  345. }
  346. }
  347. loop->status = HLOOP_STATUS_STOP;
  348. loop->end_hrtime = gethrtime_us();
  349. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  350. hloop_cleanup(loop);
  351. HV_FREE(loop);
  352. }
  353. return 0;
  354. }
  355. int hloop_wakeup(hloop_t* loop) {
  356. hevent_t ev;
  357. memset(&ev, 0, sizeof(ev));
  358. hloop_post_event(loop, &ev);
  359. return 0;
  360. }
  361. static void hloop_stop_event_cb(hevent_t* ev) {
  362. ev->loop->status = HLOOP_STATUS_STOP;
  363. }
  364. int hloop_stop(hloop_t* loop) {
  365. loop->status = HLOOP_STATUS_STOP;
  366. if (hv_gettid() != loop->tid) {
  367. hevent_t ev;
  368. memset(&ev, 0, sizeof(ev));
  369. ev.priority = HEVENT_HIGHEST_PRIORITY;
  370. ev.cb = hloop_stop_event_cb;
  371. hloop_post_event(loop, &ev);
  372. }
  373. return 0;
  374. }
  375. int hloop_pause(hloop_t* loop) {
  376. if (loop->status == HLOOP_STATUS_RUNNING) {
  377. loop->status = HLOOP_STATUS_PAUSE;
  378. }
  379. return 0;
  380. }
  381. int hloop_resume(hloop_t* loop) {
  382. if (loop->status == HLOOP_STATUS_PAUSE) {
  383. loop->status = HLOOP_STATUS_RUNNING;
  384. }
  385. return 0;
  386. }
  387. hloop_status_e hloop_status(hloop_t* loop) {
  388. return loop->status;
  389. }
  390. void hloop_update_time(hloop_t* loop) {
  391. loop->cur_hrtime = gethrtime_us();
  392. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  393. // systemtime changed, we adjust start_ms
  394. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  395. }
  396. }
  397. uint64_t hloop_now(hloop_t* loop) {
  398. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  399. }
  400. uint64_t hloop_now_ms(hloop_t* loop) {
  401. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  402. }
  403. uint64_t hloop_now_hrtime(hloop_t* loop) {
  404. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  405. }
  406. long hloop_pid(hloop_t* loop) {
  407. return loop->pid;
  408. }
  409. long hloop_tid(hloop_t* loop) {
  410. return loop->tid;
  411. }
  412. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  413. loop->userdata = userdata;
  414. }
  415. void* hloop_userdata(hloop_t* loop) {
  416. return loop->userdata;
  417. }
  418. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  419. hidle_t* idle;
  420. HV_ALLOC_SIZEOF(idle);
  421. idle->event_type = HEVENT_TYPE_IDLE;
  422. idle->priority = HEVENT_LOWEST_PRIORITY;
  423. idle->repeat = repeat;
  424. list_add(&idle->node, &loop->idles);
  425. EVENT_ADD(loop, idle, cb);
  426. loop->nidles++;
  427. return idle;
  428. }
  429. static void __hidle_del(hidle_t* idle) {
  430. if (idle->destroy) return;
  431. idle->destroy = 1;
  432. list_del(&idle->node);
  433. idle->loop->nidles--;
  434. }
  435. void hidle_del(hidle_t* idle) {
  436. if (!idle->active) return;
  437. __hidle_del(idle);
  438. EVENT_DEL(idle);
  439. }
  440. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  441. if (timeout == 0) return NULL;
  442. htimeout_t* timer;
  443. HV_ALLOC_SIZEOF(timer);
  444. timer->event_type = HEVENT_TYPE_TIMEOUT;
  445. timer->priority = HEVENT_HIGHEST_PRIORITY;
  446. timer->repeat = repeat;
  447. timer->timeout = timeout;
  448. hloop_update_time(loop);
  449. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout*1000;
  450. // NOTE: Limit granularity to 100ms
  451. if (timeout >= 1000 && timeout % 100 == 0) {
  452. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  453. }
  454. heap_insert(&loop->timers, &timer->node);
  455. EVENT_ADD(loop, timer, cb);
  456. loop->ntimers++;
  457. return (htimer_t*)timer;
  458. }
  459. void htimer_reset(htimer_t* timer) {
  460. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  461. return;
  462. }
  463. hloop_t* loop = timer->loop;
  464. htimeout_t* timeout = (htimeout_t*)timer;
  465. if (timer->destroy) {
  466. loop->ntimers++;
  467. } else {
  468. heap_remove(&loop->timers, &timer->node);
  469. }
  470. if (timer->repeat == 0) {
  471. timer->repeat = 1;
  472. }
  473. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout->timeout*1000;
  474. // NOTE: Limit granularity to 100ms
  475. if (timeout->timeout >= 1000 && timeout->timeout % 100 == 0) {
  476. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  477. }
  478. heap_insert(&loop->timers, &timer->node);
  479. EVENT_RESET(timer);
  480. }
  481. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  482. int8_t minute, int8_t hour, int8_t day,
  483. int8_t week, int8_t month, uint32_t repeat) {
  484. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  485. return NULL;
  486. }
  487. hperiod_t* timer;
  488. HV_ALLOC_SIZEOF(timer);
  489. timer->event_type = HEVENT_TYPE_PERIOD;
  490. timer->priority = HEVENT_HIGH_PRIORITY;
  491. timer->repeat = repeat;
  492. timer->minute = minute;
  493. timer->hour = hour;
  494. timer->day = day;
  495. timer->month = month;
  496. timer->week = week;
  497. timer->next_timeout = (uint64_t)cron_next_timeout(minute, hour, day, week, month) * 1000000;
  498. heap_insert(&loop->timers, &timer->node);
  499. EVENT_ADD(loop, timer, cb);
  500. loop->ntimers++;
  501. return (htimer_t*)timer;
  502. }
  503. static void __htimer_del(htimer_t* timer) {
  504. if (timer->destroy) return;
  505. heap_remove(&timer->loop->timers, &timer->node);
  506. timer->loop->ntimers--;
  507. timer->destroy = 1;
  508. }
  509. void htimer_del(htimer_t* timer) {
  510. if (!timer->active) return;
  511. __htimer_del(timer);
  512. EVENT_DEL(timer);
  513. }
  514. const char* hio_engine() {
  515. #ifdef EVENT_SELECT
  516. return "select";
  517. #elif defined(EVENT_POLL)
  518. return "poll";
  519. #elif defined(EVENT_EPOLL)
  520. return "epoll";
  521. #elif defined(EVENT_KQUEUE)
  522. return "kqueue";
  523. #elif defined(EVENT_IOCP)
  524. return "iocp";
  525. #elif defined(EVENT_PORT)
  526. return "evport";
  527. #else
  528. return "noevent";
  529. #endif
  530. }
  531. hio_t* hio_get(hloop_t* loop, int fd) {
  532. if (fd >= loop->ios.maxsize) {
  533. int newsize = ceil2e(fd);
  534. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  535. }
  536. hio_t* io = loop->ios.ptr[fd];
  537. if (io == NULL) {
  538. HV_ALLOC_SIZEOF(io);
  539. hio_init(io);
  540. io->event_type = HEVENT_TYPE_IO;
  541. io->loop = loop;
  542. io->fd = fd;
  543. loop->ios.ptr[fd] = io;
  544. }
  545. if (!io->ready) {
  546. hio_ready(io);
  547. }
  548. return io;
  549. }
  550. void hio_detach(hio_t* io) {
  551. hloop_t* loop = io->loop;
  552. int fd = io->fd;
  553. assert(loop != NULL && fd < loop->ios.maxsize);
  554. loop->ios.ptr[fd] = NULL;
  555. }
  556. void hio_attach(hloop_t* loop, hio_t* io) {
  557. int fd = io->fd;
  558. if (fd >= loop->ios.maxsize) {
  559. int newsize = ceil2e(fd);
  560. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  561. }
  562. if (loop->ios.ptr[fd] == NULL) {
  563. io->loop = loop;
  564. // NOTE: use new_loop readbuf
  565. io->readbuf.base = loop->readbuf.base;
  566. io->readbuf.len = loop->readbuf.len;
  567. loop->ios.ptr[fd] = io;
  568. }
  569. }
  570. int hio_add(hio_t* io, hio_cb cb, int events) {
  571. printd("hio_add fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  572. #ifdef OS_WIN
  573. // Windows iowatcher not work on stdio
  574. if (io->fd < 3) return -1;
  575. #endif
  576. hloop_t* loop = io->loop;
  577. if (!io->active) {
  578. EVENT_ADD(loop, io, cb);
  579. loop->nios++;
  580. }
  581. if (!io->ready) {
  582. hio_ready(io);
  583. }
  584. if (cb) {
  585. io->cb = (hevent_cb)cb;
  586. }
  587. if (!(io->events & events)) {
  588. iowatcher_add_event(loop, io->fd, events);
  589. io->events |= events;
  590. }
  591. return 0;
  592. }
  593. int hio_del(hio_t* io, int events) {
  594. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  595. #ifdef OS_WIN
  596. // Windows iowatcher not work on stdio
  597. if (io->fd < 3) return -1;
  598. #endif
  599. if (!io->active) return -1;
  600. if (io->events & events) {
  601. iowatcher_del_event(io->loop, io->fd, events);
  602. io->events &= ~events;
  603. }
  604. if (io->events == 0) {
  605. io->loop->nios--;
  606. // NOTE: not EVENT_DEL, avoid free
  607. EVENT_INACTIVE(io);
  608. }
  609. return 0;
  610. }
  611. static void hio_close_event_cb(hevent_t* ev) {
  612. hio_t* io = (hio_t*)ev->userdata;
  613. uint32_t id = (uintptr_t)ev->privdata;
  614. if (io->id != id) return;
  615. hio_close(io);
  616. }
  617. int hio_close_async(hio_t* io) {
  618. hevent_t ev;
  619. memset(&ev, 0, sizeof(ev));
  620. ev.cb = hio_close_event_cb;
  621. ev.userdata = io;
  622. ev.privdata = (void*)(uintptr_t)io->id;
  623. ev.priority = HEVENT_HIGH_PRIORITY;
  624. hloop_post_event(io->loop, &ev);
  625. return 0;
  626. }
  627. //------------------high-level apis-------------------------------------------
  628. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  629. hio_t* io = hio_get(loop, fd);
  630. assert(io != NULL);
  631. if (buf && len) {
  632. io->readbuf.base = (char*)buf;
  633. io->readbuf.len = len;
  634. }
  635. if (read_cb) {
  636. io->read_cb = read_cb;
  637. }
  638. hio_read(io);
  639. return io;
  640. }
  641. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  642. hio_t* io = hio_get(loop, fd);
  643. assert(io != NULL);
  644. if (write_cb) {
  645. io->write_cb = write_cb;
  646. }
  647. hio_write(io, buf, len);
  648. return io;
  649. }
  650. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  651. hio_t* io = hio_get(loop, listenfd);
  652. assert(io != NULL);
  653. if (accept_cb) {
  654. io->accept_cb = accept_cb;
  655. }
  656. hio_accept(io);
  657. return io;
  658. }
  659. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  660. hio_t* io = hio_get(loop, connfd);
  661. assert(io != NULL);
  662. if (connect_cb) {
  663. io->connect_cb = connect_cb;
  664. }
  665. hio_connect(io);
  666. return io;
  667. }
  668. void hclose (hloop_t* loop, int fd) {
  669. hio_t* io = hio_get(loop, fd);
  670. assert(io != NULL);
  671. hio_close(io);
  672. }
  673. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  674. //hio_t* io = hio_get(loop, connfd);
  675. //assert(io != NULL);
  676. //io->recv = 1;
  677. //if (io->io_type != HIO_TYPE_SSL) {
  678. //io->io_type = HIO_TYPE_TCP;
  679. //}
  680. return hread(loop, connfd, buf, len, read_cb);
  681. }
  682. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  683. //hio_t* io = hio_get(loop, connfd);
  684. //assert(io != NULL);
  685. //io->send = 1;
  686. //if (io->io_type != HIO_TYPE_SSL) {
  687. //io->io_type = HIO_TYPE_TCP;
  688. //}
  689. return hwrite(loop, connfd, buf, len, write_cb);
  690. }
  691. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  692. //hio_t* io = hio_get(loop, sockfd);
  693. //assert(io != NULL);
  694. //io->recvfrom = 1;
  695. //io->io_type = HIO_TYPE_UDP;
  696. return hread(loop, sockfd, buf, len, read_cb);
  697. }
  698. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  699. //hio_t* io = hio_get(loop, sockfd);
  700. //assert(io != NULL);
  701. //io->sendto = 1;
  702. //io->io_type = HIO_TYPE_UDP;
  703. return hwrite(loop, sockfd, buf, len, write_cb);
  704. }
  705. //-----------------top-level apis---------------------------------------------
  706. hio_t* hio_create(hloop_t* loop, const char* host, int port, int type) {
  707. sockaddr_u peeraddr;
  708. memset(&peeraddr, 0, sizeof(peeraddr));
  709. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  710. if (ret != 0) {
  711. //printf("unknown host: %s\n", host);
  712. return NULL;
  713. }
  714. int connfd = socket(peeraddr.sa.sa_family, type, 0);
  715. if (connfd < 0) {
  716. perror("socket");
  717. return NULL;
  718. }
  719. hio_t* io = hio_get(loop, connfd);
  720. assert(io != NULL);
  721. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  722. return io;
  723. }
  724. hio_t* hloop_create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  725. int listenfd = Listen(port, host);
  726. if (listenfd < 0) {
  727. return NULL;
  728. }
  729. hio_t* io = haccept(loop, listenfd, accept_cb);
  730. if (io == NULL) {
  731. closesocket(listenfd);
  732. }
  733. return io;
  734. }
  735. hio_t* hloop_create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  736. hio_t* io = hio_create(loop, host, port, SOCK_STREAM);
  737. if (io == NULL) return NULL;
  738. hconnect(loop, io->fd, connect_cb);
  739. return io;
  740. }
  741. hio_t* hloop_create_ssl_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  742. hio_t* io = hloop_create_tcp_server(loop, host, port, accept_cb);
  743. if (io == NULL) return NULL;
  744. hio_enable_ssl(io);
  745. return io;
  746. }
  747. hio_t* hloop_create_ssl_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  748. hio_t* io = hio_create(loop, host, port, SOCK_STREAM);
  749. if (io == NULL) return NULL;
  750. hio_enable_ssl(io);
  751. hconnect(loop, io->fd, connect_cb);
  752. return io;
  753. }
  754. hio_t* hloop_create_udp_server(hloop_t* loop, const char* host, int port) {
  755. int bindfd = Bind(port, host, SOCK_DGRAM);
  756. if (bindfd < 0) {
  757. return NULL;
  758. }
  759. return hio_get(loop, bindfd);
  760. }
  761. hio_t* hloop_create_udp_client(hloop_t* loop, const char* host, int port) {
  762. return hio_create(loop, host, port, SOCK_DGRAM);
  763. }