1
0

hloop.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #define PAUSE_TIME 10 // ms
  11. #define MAX_BLOCK_TIME 1000 // ms
  12. #define IO_ARRAY_INIT_SIZE 1024
  13. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  14. static void hio_init(hio_t* io);
  15. static void hio_ready(hio_t* io);
  16. static void hio_done(hio_t* io);
  17. static void hio_free(hio_t* io);
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. __hidle_del(idle);
  35. }
  36. EVENT_PENDING(idle);
  37. ++nidles;
  38. }
  39. return nidles;
  40. }
  41. static int hloop_process_timers(hloop_t* loop) {
  42. int ntimers = 0;
  43. htimer_t* timer = NULL;
  44. uint64_t now_hrtime = hloop_now_hrtime(loop);
  45. while (loop->timers.root) {
  46. timer = TIMER_ENTRY(loop->timers.root);
  47. if (timer->next_timeout > now_hrtime) {
  48. break;
  49. }
  50. if (timer->repeat != INFINITE) {
  51. --timer->repeat;
  52. }
  53. if (timer->repeat == 0) {
  54. __htimer_del(timer);
  55. }
  56. else {
  57. heap_dequeue(&loop->timers);
  58. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  59. while (timer->next_timeout <= now_hrtime) {
  60. timer->next_timeout += ((htimeout_t*)timer)->timeout * 1000;
  61. }
  62. }
  63. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  64. hperiod_t* period = (hperiod_t*)timer;
  65. timer->next_timeout = cron_next_timeout(period->minute, period->hour, period->day,
  66. period->week, period->month) * 1000000;
  67. }
  68. heap_insert(&loop->timers, &timer->node);
  69. }
  70. EVENT_PENDING(timer);
  71. ++ntimers;
  72. }
  73. return ntimers;
  74. }
  75. static int hloop_process_ios(hloop_t* loop, int timeout) {
  76. int nevents = iowatcher_poll_events(loop, timeout);
  77. if (nevents < 0) {
  78. hloge("poll_events error=%d", -nevents);
  79. }
  80. return nevents < 0 ? 0 : nevents;
  81. }
  82. static int hloop_process_pendings(hloop_t* loop) {
  83. if (loop->npendings == 0) return 0;
  84. hevent_t* cur = NULL;
  85. hevent_t* next = NULL;
  86. int ncbs = 0;
  87. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  88. cur = loop->pendings[i];
  89. while (cur) {
  90. next = cur->pending_next;
  91. if (cur->pending) {
  92. if (cur->active && cur->cb) {
  93. cur->cb(cur);
  94. ++ncbs;
  95. }
  96. cur->pending = 0;
  97. if (cur->destroy) {
  98. EVENT_DEL(cur);
  99. }
  100. }
  101. cur = next;
  102. }
  103. loop->pendings[i] = NULL;
  104. }
  105. loop->npendings = 0;
  106. return ncbs;
  107. }
  108. static int hloop_process_events(hloop_t* loop) {
  109. // ios -> timers -> idles
  110. int nios, ntimers, nidles;
  111. nios = ntimers = nidles = 0;
  112. // calc blocktime
  113. int32_t blocktime = MAX_BLOCK_TIME;
  114. hloop_update_time(loop);
  115. if (loop->timers.root) {
  116. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  117. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  118. if (blocktime_us <= 0) goto process_timers;
  119. blocktime = blocktime_us / 1000;
  120. ++blocktime;
  121. blocktime = MIN(blocktime, MAX_BLOCK_TIME);
  122. }
  123. if (loop->nios) {
  124. nios = hloop_process_ios(loop, blocktime);
  125. }
  126. else {
  127. msleep(blocktime);
  128. }
  129. hloop_update_time(loop);
  130. process_timers:
  131. if (loop->ntimers) {
  132. ntimers = hloop_process_timers(loop);
  133. }
  134. int npendings = loop->npendings;
  135. if (npendings == 0) {
  136. if (loop->nidles) {
  137. nidles= hloop_process_idles(loop);
  138. }
  139. }
  140. int ncbs = hloop_process_pendings(loop);
  141. //printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  142. //blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  143. //loop->nactives, npendings, ncbs);
  144. return ncbs;
  145. }
  146. static void hloop_init(hloop_t* loop) {
  147. loop->status = HLOOP_STATUS_STOP;
  148. // idles
  149. list_init(&loop->idles);
  150. // timers
  151. heap_init(&loop->timers, timers_compare);
  152. // ios: init when hio_add
  153. //io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  154. // iowatcher: init when iowatcher_add_event
  155. //iowatcher_init(loop);
  156. // custom_events: init when hloop_post_event
  157. //event_queue_init(&loop->custom_events, 4);
  158. loop->sockpair[0] = loop->sockpair[1] = -1;
  159. hmutex_init(&loop->custom_events_mutex);
  160. // NOTE: init start_time here, because htimer_add use it.
  161. loop->start_ms = gettimeofday_ms();
  162. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  163. }
  164. static void hloop_cleanup(hloop_t* loop) {
  165. // pendings
  166. printd("cleanup pendings...\n");
  167. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  168. loop->pendings[i] = NULL;
  169. }
  170. // idles
  171. printd("cleanup idles...\n");
  172. struct list_node* node = loop->idles.next;
  173. hidle_t* idle;
  174. while (node != &loop->idles) {
  175. idle = IDLE_ENTRY(node);
  176. node = node->next;
  177. HV_FREE(idle);
  178. }
  179. list_init(&loop->idles);
  180. // timers
  181. printd("cleanup timers...\n");
  182. htimer_t* timer;
  183. while (loop->timers.root) {
  184. timer = TIMER_ENTRY(loop->timers.root);
  185. heap_dequeue(&loop->timers);
  186. HV_FREE(timer);
  187. }
  188. heap_init(&loop->timers, NULL);
  189. // ios
  190. printd("cleanup ios...\n");
  191. for (int i = 0; i < loop->ios.maxsize; ++i) {
  192. hio_t* io = loop->ios.ptr[i];
  193. if (io) {
  194. if ((!(io->io_type&HIO_TYPE_STDIO)) && io->active) {
  195. hio_close(io);
  196. }
  197. hio_free(io);
  198. }
  199. }
  200. io_array_cleanup(&loop->ios);
  201. // readbuf
  202. if (loop->readbuf.base && loop->readbuf.len) {
  203. free(loop->readbuf.base);
  204. loop->readbuf.base = NULL;
  205. loop->readbuf.len = 0;
  206. }
  207. // iowatcher
  208. iowatcher_cleanup(loop);
  209. // custom_events
  210. hmutex_lock(&loop->custom_events_mutex);
  211. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  212. closesocket(loop->sockpair[0]);
  213. closesocket(loop->sockpair[1]);
  214. loop->sockpair[0] = loop->sockpair[1] = -1;
  215. }
  216. event_queue_cleanup(&loop->custom_events);
  217. hmutex_unlock(&loop->custom_events_mutex);
  218. hmutex_destroy(&loop->custom_events_mutex);
  219. }
  220. hloop_t* hloop_new(int flags) {
  221. hloop_t* loop;
  222. HV_ALLOC_SIZEOF(loop);
  223. memset(loop, 0, sizeof(hloop_t));
  224. hloop_init(loop);
  225. loop->flags |= flags;
  226. return loop;
  227. }
  228. void hloop_free(hloop_t** pp) {
  229. if (pp && *pp) {
  230. hloop_cleanup(*pp);
  231. HV_FREE(*pp);
  232. *pp = NULL;
  233. }
  234. }
  235. int hloop_run(hloop_t* loop) {
  236. loop->status = HLOOP_STATUS_RUNNING;
  237. while (loop->status != HLOOP_STATUS_STOP) {
  238. if (loop->status == HLOOP_STATUS_PAUSE) {
  239. msleep(PAUSE_TIME);
  240. hloop_update_time(loop);
  241. continue;
  242. }
  243. ++loop->loop_cnt;
  244. if (loop->nactives == 0 && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  245. break;
  246. }
  247. hloop_process_events(loop);
  248. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  249. break;
  250. }
  251. }
  252. loop->status = HLOOP_STATUS_STOP;
  253. loop->end_hrtime = gethrtime_us();
  254. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  255. hloop_cleanup(loop);
  256. HV_FREE(loop);
  257. }
  258. return 0;
  259. }
  260. int hloop_stop(hloop_t* loop) {
  261. loop->status = HLOOP_STATUS_STOP;
  262. return 0;
  263. }
  264. int hloop_pause(hloop_t* loop) {
  265. if (loop->status == HLOOP_STATUS_RUNNING) {
  266. loop->status = HLOOP_STATUS_PAUSE;
  267. }
  268. return 0;
  269. }
  270. int hloop_resume(hloop_t* loop) {
  271. if (loop->status == HLOOP_STATUS_PAUSE) {
  272. loop->status = HLOOP_STATUS_RUNNING;
  273. }
  274. return 0;
  275. }
  276. void hloop_update_time(hloop_t* loop) {
  277. loop->cur_hrtime = gethrtime_us();
  278. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  279. // systemtime changed, we adjust start_ms
  280. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  281. }
  282. }
  283. uint64_t hloop_now(hloop_t* loop) {
  284. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  285. }
  286. uint64_t hloop_now_ms(hloop_t* loop) {
  287. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  288. }
  289. uint64_t hloop_now_hrtime(hloop_t* loop) {
  290. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  291. }
  292. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  293. loop->userdata = userdata;
  294. }
  295. void* hloop_userdata(hloop_t* loop) {
  296. return loop->userdata;
  297. }
  298. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  299. hidle_t* idle;
  300. HV_ALLOC_SIZEOF(idle);
  301. idle->event_type = HEVENT_TYPE_IDLE;
  302. idle->priority = HEVENT_LOWEST_PRIORITY;
  303. idle->repeat = repeat;
  304. list_add(&idle->node, &loop->idles);
  305. EVENT_ADD(loop, idle, cb);
  306. loop->nidles++;
  307. return idle;
  308. }
  309. static void __hidle_del(hidle_t* idle) {
  310. if (idle->destroy) return;
  311. idle->destroy = 1;
  312. list_del(&idle->node);
  313. idle->loop->nidles--;
  314. }
  315. void hidle_del(hidle_t* idle) {
  316. if (!idle->active) return;
  317. EVENT_DEL(idle);
  318. __hidle_del(idle);
  319. }
  320. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  321. if (timeout == 0) return NULL;
  322. htimeout_t* timer;
  323. HV_ALLOC_SIZEOF(timer);
  324. timer->event_type = HEVENT_TYPE_TIMEOUT;
  325. timer->priority = HEVENT_HIGHEST_PRIORITY;
  326. timer->repeat = repeat;
  327. timer->timeout = timeout;
  328. hloop_update_time(loop);
  329. timer->next_timeout = hloop_now_hrtime(loop) + timeout*1000;
  330. heap_insert(&loop->timers, &timer->node);
  331. EVENT_ADD(loop, timer, cb);
  332. loop->ntimers++;
  333. return (htimer_t*)timer;
  334. }
  335. void htimer_reset(htimer_t* timer) {
  336. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  337. return;
  338. }
  339. hloop_t* loop = timer->loop;
  340. htimeout_t* timeout = (htimeout_t*)timer;
  341. if (timer->pending) {
  342. if (timer->repeat == 0) {
  343. timer->repeat = 1;
  344. }
  345. }
  346. else {
  347. heap_remove(&loop->timers, &timer->node);
  348. }
  349. timer->next_timeout = hloop_now_hrtime(loop) + timeout->timeout*1000;
  350. heap_insert(&loop->timers, &timer->node);
  351. EVENT_RESET(timer);
  352. }
  353. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  354. int8_t minute, int8_t hour, int8_t day,
  355. int8_t week, int8_t month, uint32_t repeat) {
  356. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  357. return NULL;
  358. }
  359. hperiod_t* timer;
  360. HV_ALLOC_SIZEOF(timer);
  361. timer->event_type = HEVENT_TYPE_PERIOD;
  362. timer->priority = HEVENT_HIGH_PRIORITY;
  363. timer->repeat = repeat;
  364. timer->minute = minute;
  365. timer->hour = hour;
  366. timer->day = day;
  367. timer->month = month;
  368. timer->week = week;
  369. timer->next_timeout = cron_next_timeout(minute, hour, day, week, month) * 1000000;
  370. heap_insert(&loop->timers, &timer->node);
  371. EVENT_ADD(loop, timer, cb);
  372. loop->ntimers++;
  373. return (htimer_t*)timer;
  374. }
  375. static void __htimer_del(htimer_t* timer) {
  376. if (timer->destroy) return;
  377. heap_remove(&timer->loop->timers, &timer->node);
  378. timer->loop->ntimers--;
  379. timer->destroy = 1;
  380. }
  381. void htimer_del(htimer_t* timer) {
  382. if (!timer->active) return;
  383. __htimer_del(timer);
  384. EVENT_DEL(timer);
  385. }
  386. const char* hio_engine() {
  387. #ifdef EVENT_SELECT
  388. return "select";
  389. #elif defined(EVENT_POLL)
  390. return "poll";
  391. #elif defined(EVENT_EPOLL)
  392. return "epoll";
  393. #elif defined(EVENT_KQUEUE)
  394. return "kqueue";
  395. #elif defined(EVENT_IOCP)
  396. return "iocp";
  397. #elif defined(EVENT_PORT)
  398. return "evport";
  399. #else
  400. return "noevent";
  401. #endif
  402. }
  403. void hio_init(hio_t* io) {
  404. memset(io, 0, sizeof(hio_t));
  405. io->event_type = HEVENT_TYPE_IO;
  406. io->event_index[0] = io->event_index[1] = -1;
  407. // write_queue init when hwrite try_write failed
  408. //write_queue_init(&io->write_queue, 4);;
  409. }
  410. static void fill_io_type(hio_t* io) {
  411. int type = 0;
  412. socklen_t optlen = sizeof(int);
  413. int ret = getsockopt(io->fd, SOL_SOCKET, SO_TYPE, (char*)&type, &optlen);
  414. printd("getsockopt SO_TYPE fd=%d ret=%d type=%d errno=%d\n", io->fd, ret, type, socket_errno());
  415. if (ret == 0) {
  416. switch (type) {
  417. case SOCK_STREAM: io->io_type = HIO_TYPE_TCP; break;
  418. case SOCK_DGRAM: io->io_type = HIO_TYPE_UDP; break;
  419. case SOCK_RAW: io->io_type = HIO_TYPE_IP; break;
  420. default: io->io_type = HIO_TYPE_SOCKET; break;
  421. }
  422. }
  423. else if (socket_errno() == ENOTSOCK) {
  424. switch (io->fd) {
  425. case 0: io->io_type = HIO_TYPE_STDIN; break;
  426. case 1: io->io_type = HIO_TYPE_STDOUT; break;
  427. case 2: io->io_type = HIO_TYPE_STDERR; break;
  428. default: io->io_type = HIO_TYPE_FILE; break;
  429. }
  430. }
  431. }
  432. static void hio_socket_init(hio_t* io) {
  433. // nonblocking
  434. nonblocking(io->fd);
  435. // fill io->localaddr io->peeraddr
  436. if (io->localaddr == NULL) {
  437. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  438. }
  439. if (io->peeraddr == NULL) {
  440. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  441. }
  442. socklen_t addrlen = sizeof(sockaddr_u);
  443. int ret = getsockname(io->fd, io->localaddr, &addrlen);
  444. printd("getsockname fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  445. // NOTE:
  446. // tcp_server peeraddr set by accept
  447. // udp_server peeraddr set by recvfrom
  448. // tcp_client/udp_client peeraddr set by hio_setpeeraddr
  449. if (io->io_type == HIO_TYPE_TCP || io->io_type == HIO_TYPE_SSL) {
  450. // tcp acceptfd
  451. addrlen = sizeof(sockaddr_u);
  452. ret = getpeername(io->fd, io->peeraddr, &addrlen);
  453. printd("getpeername fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  454. }
  455. }
  456. void hio_ready(hio_t* io) {
  457. if (io->ready) return;
  458. io->ready = 1;
  459. io->closed = 0;
  460. io->accept = io->connect = io->connectex = 0;
  461. io->recv = io->send = 0;
  462. io->recvfrom = io->sendto = 0;
  463. io->io_type = HIO_TYPE_UNKNOWN;
  464. io->error = 0;
  465. io->events = io->revents = 0;
  466. io->read_cb = NULL;
  467. io->write_cb = NULL;
  468. io->close_cb = 0;
  469. io->accept_cb = 0;
  470. io->connect_cb = 0;
  471. io->event_index[0] = io->event_index[1] = -1;
  472. io->hovlp = NULL;
  473. io->ssl = NULL;
  474. io->timer = NULL;
  475. fill_io_type(io);
  476. if (io->io_type & HIO_TYPE_SOCKET) {
  477. hio_socket_init(io);
  478. }
  479. }
  480. void hio_done(hio_t* io) {
  481. io->ready = 0;
  482. offset_buf_t* pbuf = NULL;
  483. while (!write_queue_empty(&io->write_queue)) {
  484. pbuf = write_queue_front(&io->write_queue);
  485. HV_FREE(pbuf->base);
  486. write_queue_pop_front(&io->write_queue);
  487. }
  488. write_queue_cleanup(&io->write_queue);
  489. }
  490. void hio_free(hio_t* io) {
  491. if (io == NULL) return;
  492. hio_done(io);
  493. HV_FREE(io->localaddr);
  494. HV_FREE(io->peeraddr);
  495. HV_FREE(io);
  496. }
  497. hio_t* hio_get(hloop_t* loop, int fd) {
  498. if (loop->ios.maxsize == 0) {
  499. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  500. }
  501. if (fd >= loop->ios.maxsize) {
  502. int newsize = ceil2e(fd);
  503. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  504. }
  505. hio_t* io = loop->ios.ptr[fd];
  506. if (io == NULL) {
  507. HV_ALLOC_SIZEOF(io);
  508. hio_init(io);
  509. io->loop = loop;
  510. io->fd = fd;
  511. loop->ios.ptr[fd] = io;
  512. }
  513. if (!io->ready) {
  514. hio_ready(io);
  515. }
  516. return io;
  517. }
  518. int hio_add(hio_t* io, hio_cb cb, int events) {
  519. printd("hio_add fd=%d events=%d\n", io->fd, events);
  520. #ifdef OS_WIN
  521. // Windows iowatcher not work on stdio
  522. if (io->fd < 3) return 0;
  523. #endif
  524. hloop_t* loop = io->loop;
  525. if (!io->ready) {
  526. hio_ready(io);
  527. }
  528. if (!io->active) {
  529. EVENT_ADD(loop, io, cb);
  530. loop->nios++;
  531. }
  532. if (cb) {
  533. io->cb = (hevent_cb)cb;
  534. }
  535. iowatcher_add_event(loop, io->fd, events);
  536. io->events |= events;
  537. return 0;
  538. }
  539. int hio_del(hio_t* io, int events) {
  540. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  541. if (!io->active) return 0;
  542. iowatcher_del_event(io->loop, io->fd, events);
  543. io->events &= ~events;
  544. if (io->events == 0) {
  545. io->loop->nios--;
  546. // NOTE: not EVENT_DEL, avoid free
  547. EVENT_INACTIVE(io);
  548. hio_done(io);
  549. }
  550. return 0;
  551. }
  552. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  553. hio_t* io = hio_get(loop, fd);
  554. if (io == NULL) return NULL;
  555. io->readbuf.base = (char*)buf;
  556. io->readbuf.len = len;
  557. if (read_cb) {
  558. io->read_cb = read_cb;
  559. }
  560. hio_read(io);
  561. return io;
  562. }
  563. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  564. hio_t* io = hio_get(loop, fd);
  565. if (io == NULL) return NULL;
  566. if (write_cb) {
  567. io->write_cb = write_cb;
  568. }
  569. hio_write(io, buf, len);
  570. return io;
  571. }
  572. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  573. hio_t* io = hio_get(loop, listenfd);
  574. if (io == NULL) return NULL;
  575. io->accept = 1;
  576. if (accept_cb) {
  577. io->accept_cb = accept_cb;
  578. }
  579. hio_accept(io);
  580. return io;
  581. }
  582. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  583. hio_t* io = hio_get(loop, connfd);
  584. if (io == NULL) return NULL;
  585. io->connect = 1;
  586. if (connect_cb) {
  587. io->connect_cb = connect_cb;
  588. }
  589. hio_connect(io);
  590. return io;
  591. }
  592. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  593. //hio_t* io = hio_get(loop, connfd);
  594. //if (io == NULL) return NULL;
  595. //io->recv = 1;
  596. //if (io->io_type != HIO_TYPE_SSL) {
  597. //io->io_type = HIO_TYPE_TCP;
  598. //}
  599. return hread(loop, connfd, buf, len, read_cb);
  600. }
  601. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  602. //hio_t* io = hio_get(loop, connfd);
  603. //if (io == NULL) return NULL;
  604. //io->send = 1;
  605. //if (io->io_type != HIO_TYPE_SSL) {
  606. //io->io_type = HIO_TYPE_TCP;
  607. //}
  608. return hwrite(loop, connfd, buf, len, write_cb);
  609. }
  610. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  611. //hio_t* io = hio_get(loop, sockfd);
  612. //if (io == NULL) return NULL;
  613. //io->recvfrom = 1;
  614. //io->io_type = HIO_TYPE_UDP;
  615. return hread(loop, sockfd, buf, len, read_cb);
  616. }
  617. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  618. //hio_t* io = hio_get(loop, sockfd);
  619. //if (io == NULL) return NULL;
  620. //io->sendto = 1;
  621. //io->io_type = HIO_TYPE_UDP;
  622. return hwrite(loop, sockfd, buf, len, write_cb);
  623. }
  624. hio_t* create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  625. int listenfd = Listen(port, host);
  626. if (listenfd < 0) {
  627. return NULL;
  628. }
  629. hio_t* io = haccept(loop, listenfd, accept_cb);
  630. if (io == NULL) {
  631. closesocket(listenfd);
  632. }
  633. return io;
  634. }
  635. hio_t* create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  636. sockaddr_u peeraddr;
  637. memset(&peeraddr, 0, sizeof(peeraddr));
  638. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  639. if (ret != 0) {
  640. //printf("unknown host: %s\n", host);
  641. return NULL;
  642. }
  643. int connfd = socket(peeraddr.sa.sa_family, SOCK_STREAM, 0);
  644. if (connfd < 0) {
  645. perror("socket");
  646. return NULL;
  647. }
  648. hio_t* io = hio_get(loop, connfd);
  649. if (io == NULL) return NULL;
  650. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  651. hconnect(loop, connfd, connect_cb);
  652. return io;
  653. }
  654. // @server: socket -> bind -> hrecvfrom
  655. hio_t* create_udp_server(hloop_t* loop, const char* host, int port) {
  656. int bindfd = Bind(port, host, SOCK_DGRAM);
  657. if (bindfd < 0) {
  658. return NULL;
  659. }
  660. return hio_get(loop, bindfd);
  661. }
  662. // @client: Resolver -> socket -> hio_get -> hio_set_peeraddr
  663. hio_t* create_udp_client(hloop_t* loop, const char* host, int port) {
  664. sockaddr_u peeraddr;
  665. memset(&peeraddr, 0, sizeof(peeraddr));
  666. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  667. if (ret != 0) {
  668. //printf("unknown host: %s\n", host);
  669. return NULL;
  670. }
  671. int sockfd = socket(peeraddr.sa.sa_family, SOCK_DGRAM, 0);
  672. if (sockfd < 0) {
  673. perror("socket");
  674. return NULL;
  675. }
  676. hio_t* io = hio_get(loop, sockfd);
  677. if (io == NULL) return NULL;
  678. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  679. return io;
  680. }
  681. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  682. hloop_t* loop = io->loop;
  683. hevent_t* pev = NULL;
  684. hevent_t ev;
  685. for (int i = 0; i < readbytes; ++i) {
  686. hmutex_lock(&loop->custom_events_mutex);
  687. if (event_queue_empty(&loop->custom_events)) {
  688. goto unlock;
  689. }
  690. pev = event_queue_front(&loop->custom_events);
  691. if (pev == NULL) {
  692. goto unlock;
  693. }
  694. ev = *pev;
  695. event_queue_pop_front(&loop->custom_events);
  696. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  697. hmutex_unlock(&loop->custom_events_mutex);
  698. if (ev.cb) {
  699. ev.cb(&ev);
  700. }
  701. }
  702. return;
  703. unlock:
  704. hmutex_unlock(&loop->custom_events_mutex);
  705. }
  706. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  707. char buf = '1';
  708. hmutex_lock(&loop->custom_events_mutex);
  709. if (loop->sockpair[0] <= 0 && loop->sockpair[1] <= 0) {
  710. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  711. hloge("socketpair error");
  712. goto unlock;
  713. }
  714. hread(loop, loop->sockpair[1], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  715. }
  716. if (loop->custom_events.maxsize == 0) {
  717. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  718. }
  719. if (ev->loop == NULL) {
  720. ev->loop = loop;
  721. }
  722. if (ev->event_type == 0) {
  723. ev->event_type = HEVENT_TYPE_CUSTOM;
  724. }
  725. if (ev->event_id == 0) {
  726. ev->event_id = ++loop->event_counter;
  727. }
  728. event_queue_push_back(&loop->custom_events, ev);
  729. hwrite(loop, loop->sockpair[0], &buf, 1, NULL);
  730. unlock:
  731. hmutex_unlock(&loop->custom_events_mutex);
  732. }