hevent.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. #include "hevent.h"
  2. #include "hsocket.h"
  3. #include "hatomic.h"
  4. #include "hlog.h"
  5. #include "herr.h"
  6. #include "unpack.h"
  7. uint64_t hloop_next_event_id() {
  8. static hatomic_t s_id = HATOMIC_VAR_INIT(0);
  9. return ++s_id;
  10. }
  11. uint32_t hio_next_id() {
  12. static hatomic_t s_id = HATOMIC_VAR_INIT(0);
  13. return ++s_id;
  14. }
  15. static void fill_io_type(hio_t* io) {
  16. int type = 0;
  17. socklen_t optlen = sizeof(int);
  18. int ret = getsockopt(io->fd, SOL_SOCKET, SO_TYPE, (char*)&type, &optlen);
  19. printd("getsockopt SO_TYPE fd=%d ret=%d type=%d errno=%d\n", io->fd, ret, type, socket_errno());
  20. if (ret == 0) {
  21. switch (type) {
  22. case SOCK_STREAM: io->io_type = HIO_TYPE_TCP; break;
  23. case SOCK_DGRAM: io->io_type = HIO_TYPE_UDP; break;
  24. case SOCK_RAW: io->io_type = HIO_TYPE_IP; break;
  25. default: io->io_type = HIO_TYPE_SOCKET; break;
  26. }
  27. }
  28. else if (socket_errno() == ENOTSOCK) {
  29. switch (io->fd) {
  30. case 0: io->io_type = HIO_TYPE_STDIN; break;
  31. case 1: io->io_type = HIO_TYPE_STDOUT; break;
  32. case 2: io->io_type = HIO_TYPE_STDERR; break;
  33. default: io->io_type = HIO_TYPE_FILE; break;
  34. }
  35. }
  36. else {
  37. io->io_type = HIO_TYPE_TCP;
  38. }
  39. }
  40. static void hio_socket_init(hio_t* io) {
  41. if ((io->io_type & HIO_TYPE_SOCK_DGRAM) || (io->io_type & HIO_TYPE_SOCK_RAW)) {
  42. // NOTE: sendto multiple peeraddr cannot use io->write_queue
  43. blocking(io->fd);
  44. } else {
  45. nonblocking(io->fd);
  46. }
  47. // fill io->localaddr io->peeraddr
  48. if (io->localaddr == NULL) {
  49. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  50. }
  51. if (io->peeraddr == NULL) {
  52. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  53. }
  54. socklen_t addrlen = sizeof(sockaddr_u);
  55. int ret = getsockname(io->fd, io->localaddr, &addrlen);
  56. printd("getsockname fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  57. // NOTE: udp peeraddr set by recvfrom/sendto
  58. if (io->io_type & HIO_TYPE_SOCK_STREAM) {
  59. addrlen = sizeof(sockaddr_u);
  60. ret = getpeername(io->fd, io->peeraddr, &addrlen);
  61. printd("getpeername fd=%d ret=%d errno=%d\n", io->fd, ret, socket_errno());
  62. }
  63. }
  64. void hio_init(hio_t* io) {
  65. // alloc localaddr,peeraddr when hio_socket_init
  66. /*
  67. if (io->localaddr == NULL) {
  68. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  69. }
  70. if (io->peeraddr == NULL) {
  71. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  72. }
  73. */
  74. // write_queue init when hwrite try_write failed
  75. // write_queue_init(&io->write_queue, 4);
  76. hrecursive_mutex_init(&io->write_mutex);
  77. }
  78. void hio_ready(hio_t* io) {
  79. if (io->ready) return;
  80. // flags
  81. io->ready = 1;
  82. io->closed = 0;
  83. io->accept = io->connect = io->connectex = 0;
  84. io->recv = io->send = 0;
  85. io->recvfrom = io->sendto = 0;
  86. io->close = 0;
  87. // public:
  88. io->id = hio_next_id();
  89. io->io_type = HIO_TYPE_UNKNOWN;
  90. io->error = 0;
  91. io->events = io->revents = 0;
  92. io->last_read_hrtime = io->last_write_hrtime = io->loop->cur_hrtime;
  93. // readbuf
  94. io->alloced_readbuf = 0;
  95. io->readbuf.base = io->loop->readbuf.base;
  96. io->readbuf.len = io->loop->readbuf.len;
  97. io->readbuf.head = io->readbuf.tail = 0;
  98. io->read_flags = 0;
  99. io->read_until_length = 0;
  100. io->max_read_bufsize = MAX_READ_BUFSIZE;
  101. io->small_readbytes_cnt = 0;
  102. // write_queue
  103. io->write_bufsize = 0;
  104. io->max_write_bufsize = MAX_WRITE_BUFSIZE;
  105. // callbacks
  106. io->read_cb = NULL;
  107. io->write_cb = NULL;
  108. io->close_cb = NULL;
  109. io->accept_cb = NULL;
  110. io->connect_cb = NULL;
  111. // timers
  112. io->connect_timeout = 0;
  113. io->connect_timer = NULL;
  114. io->close_timeout = 0;
  115. io->close_timer = NULL;
  116. io->read_timeout = 0;
  117. io->read_timer = NULL;
  118. io->write_timeout = 0;
  119. io->write_timer = NULL;
  120. io->keepalive_timeout = 0;
  121. io->keepalive_timer = NULL;
  122. io->heartbeat_interval = 0;
  123. io->heartbeat_fn = NULL;
  124. io->heartbeat_timer = NULL;
  125. // upstream
  126. io->upstream_io = NULL;
  127. // unpack
  128. io->unpack_setting = NULL;
  129. // ssl
  130. io->ssl = NULL;
  131. io->ssl_ctx = NULL;
  132. io->alloced_ssl_ctx = 0;
  133. // context
  134. io->ctx = NULL;
  135. // private:
  136. #if defined(EVENT_POLL) || defined(EVENT_KQUEUE)
  137. io->event_index[0] = io->event_index[1] = -1;
  138. #endif
  139. #ifdef EVENT_IOCP
  140. io->hovlp = NULL;
  141. #endif
  142. // io_type
  143. fill_io_type(io);
  144. if (io->io_type & HIO_TYPE_SOCKET) {
  145. hio_socket_init(io);
  146. }
  147. #if WITH_RUDP
  148. if ((io->io_type & HIO_TYPE_SOCK_DGRAM) || (io->io_type & HIO_TYPE_SOCK_RAW)) {
  149. rudp_init(&io->rudp);
  150. }
  151. #endif
  152. }
  153. void hio_done(hio_t* io) {
  154. if (!io->ready) return;
  155. io->ready = 0;
  156. hio_del(io, HV_RDWR);
  157. // readbuf
  158. hio_free_readbuf(io);
  159. // write_queue
  160. offset_buf_t* pbuf = NULL;
  161. hrecursive_mutex_lock(&io->write_mutex);
  162. while (!write_queue_empty(&io->write_queue)) {
  163. pbuf = write_queue_front(&io->write_queue);
  164. HV_FREE(pbuf->base);
  165. write_queue_pop_front(&io->write_queue);
  166. }
  167. write_queue_cleanup(&io->write_queue);
  168. hrecursive_mutex_unlock(&io->write_mutex);
  169. #if WITH_RUDP
  170. if ((io->io_type & HIO_TYPE_SOCK_DGRAM) || (io->io_type & HIO_TYPE_SOCK_RAW)) {
  171. rudp_cleanup(&io->rudp);
  172. }
  173. #endif
  174. }
  175. void hio_free(hio_t* io) {
  176. if (io == NULL) return;
  177. hio_close(io);
  178. hrecursive_mutex_destroy(&io->write_mutex);
  179. HV_FREE(io->localaddr);
  180. HV_FREE(io->peeraddr);
  181. HV_FREE(io);
  182. }
  183. bool hio_is_opened(hio_t* io) {
  184. if (io == NULL) return false;
  185. return io->ready == 1 && io->closed == 0;
  186. }
  187. bool hio_is_closed(hio_t* io) {
  188. if (io == NULL) return true;
  189. return io->ready == 0 && io->closed == 1;
  190. }
  191. uint32_t hio_id (hio_t* io) {
  192. return io->id;
  193. }
  194. int hio_fd(hio_t* io) {
  195. return io->fd;
  196. }
  197. hio_type_e hio_type(hio_t* io) {
  198. return io->io_type;
  199. }
  200. int hio_error(hio_t* io) {
  201. return io->error;
  202. }
  203. int hio_events(hio_t* io) {
  204. return io->events;
  205. }
  206. int hio_revents(hio_t* io) {
  207. return io->revents;
  208. }
  209. struct sockaddr* hio_localaddr(hio_t* io) {
  210. return io->localaddr;
  211. }
  212. struct sockaddr* hio_peeraddr(hio_t* io) {
  213. return io->peeraddr;
  214. }
  215. void hio_set_context(hio_t* io, void* ctx) {
  216. io->ctx = ctx;
  217. }
  218. void* hio_context(hio_t* io) {
  219. return io->ctx;
  220. }
  221. haccept_cb hio_getcb_accept(hio_t* io) {
  222. return io->accept_cb;
  223. }
  224. hconnect_cb hio_getcb_connect(hio_t* io) {
  225. return io->connect_cb;
  226. }
  227. hread_cb hio_getcb_read(hio_t* io) {
  228. return io->read_cb;
  229. }
  230. hwrite_cb hio_getcb_write(hio_t* io) {
  231. return io->write_cb;
  232. }
  233. hclose_cb hio_getcb_close(hio_t* io) {
  234. return io->close_cb;
  235. }
  236. void hio_setcb_accept(hio_t* io, haccept_cb accept_cb) {
  237. io->accept_cb = accept_cb;
  238. }
  239. void hio_setcb_connect(hio_t* io, hconnect_cb connect_cb) {
  240. io->connect_cb = connect_cb;
  241. }
  242. void hio_setcb_read(hio_t* io, hread_cb read_cb) {
  243. io->read_cb = read_cb;
  244. }
  245. void hio_setcb_write(hio_t* io, hwrite_cb write_cb) {
  246. io->write_cb = write_cb;
  247. }
  248. void hio_setcb_close(hio_t* io, hclose_cb close_cb) {
  249. io->close_cb = close_cb;
  250. }
  251. void hio_accept_cb(hio_t* io) {
  252. /*
  253. char localaddrstr[SOCKADDR_STRLEN] = {0};
  254. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  255. printd("accept connfd=%d [%s] <= [%s]\n", io->fd,
  256. SOCKADDR_STR(io->localaddr, localaddrstr),
  257. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  258. */
  259. if (io->accept_cb) {
  260. // printd("accept_cb------\n");
  261. io->accept_cb(io);
  262. // printd("accept_cb======\n");
  263. }
  264. }
  265. void hio_connect_cb(hio_t* io) {
  266. /*
  267. char localaddrstr[SOCKADDR_STRLEN] = {0};
  268. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  269. printd("connect connfd=%d [%s] => [%s]\n", io->fd,
  270. SOCKADDR_STR(io->localaddr, localaddrstr),
  271. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  272. */
  273. if (io->connect_cb) {
  274. // printd("connect_cb------\n");
  275. io->connect_cb(io);
  276. // printd("connect_cb======\n");
  277. }
  278. }
  279. void hio_handle_read(hio_t* io, void* buf, int readbytes) {
  280. #if WITH_KCP
  281. if (io->io_type == HIO_TYPE_KCP) {
  282. hio_read_kcp(io, buf, readbytes);
  283. return;
  284. }
  285. #endif
  286. if (io->unpack_setting) {
  287. // hio_set_unpack
  288. hio_unpack(io, buf, readbytes);
  289. } else {
  290. const unsigned char* sp = (const unsigned char*)io->readbuf.base + io->readbuf.head;
  291. const unsigned char* ep = (const unsigned char*)buf + readbytes;
  292. if (io->read_flags & HIO_READ_UNTIL_LENGTH) {
  293. // hio_read_until_length
  294. if (ep - sp >= io->read_until_length) {
  295. io->readbuf.head += io->read_until_length;
  296. if (io->readbuf.head == io->readbuf.tail) {
  297. io->readbuf.head = io->readbuf.tail = 0;
  298. }
  299. io->read_flags &= ~HIO_READ_UNTIL_LENGTH;
  300. hio_read_cb(io, (void*)sp, io->read_until_length);
  301. }
  302. } else if (io->read_flags & HIO_READ_UNTIL_DELIM) {
  303. // hio_read_until_delim
  304. const unsigned char* p = (const unsigned char*)buf;
  305. for (int i = 0; i < readbytes; ++i, ++p) {
  306. if (*p == io->read_until_delim) {
  307. int len = p - sp + 1;
  308. io->readbuf.head += len;
  309. if (io->readbuf.head == io->readbuf.tail) {
  310. io->readbuf.head = io->readbuf.tail = 0;
  311. }
  312. io->read_flags &= ~HIO_READ_UNTIL_DELIM;
  313. hio_read_cb(io, (void*)sp, len);
  314. return;
  315. }
  316. }
  317. } else {
  318. // hio_read
  319. io->readbuf.head = io->readbuf.tail = 0;
  320. hio_read_cb(io, (void*)sp, ep - sp);
  321. }
  322. }
  323. if (io->readbuf.head == io->readbuf.tail) {
  324. io->readbuf.head = io->readbuf.tail = 0;
  325. }
  326. // readbuf autosize
  327. if (io->readbuf.tail == io->readbuf.len) {
  328. if (io->readbuf.head == 0) {
  329. // scale up * 2
  330. hio_alloc_readbuf(io, io->readbuf.len * 2);
  331. } else {
  332. // [head, tail] => [base, tail - head]
  333. memmove(io->readbuf.base, io->readbuf.base + io->readbuf.head, io->readbuf.tail - io->readbuf.head);
  334. }
  335. } else {
  336. size_t small_size = io->readbuf.len / 2;
  337. if (io->readbuf.tail < small_size &&
  338. io->small_readbytes_cnt >= 3) {
  339. // scale down / 2
  340. hio_alloc_readbuf(io, small_size);
  341. }
  342. }
  343. }
  344. void hio_read_cb(hio_t* io, void* buf, int len) {
  345. if (io->read_flags & HIO_READ_ONCE) {
  346. io->read_flags &= ~HIO_READ_ONCE;
  347. hio_read_stop(io);
  348. }
  349. if (io->read_cb) {
  350. // printd("read_cb------\n");
  351. io->read_cb(io, buf, len);
  352. // printd("read_cb======\n");
  353. }
  354. // for readbuf autosize
  355. if (hio_is_alloced_readbuf(io) && io->readbuf.len > READ_BUFSIZE_HIGH_WATER) {
  356. size_t small_size = io->readbuf.len / 2;
  357. if (len < small_size) {
  358. ++io->small_readbytes_cnt;
  359. } else {
  360. io->small_readbytes_cnt = 0;
  361. }
  362. }
  363. }
  364. void hio_write_cb(hio_t* io, const void* buf, int len) {
  365. if (io->write_cb) {
  366. // printd("write_cb------\n");
  367. io->write_cb(io, buf, len);
  368. // printd("write_cb======\n");
  369. }
  370. }
  371. void hio_close_cb(hio_t* io) {
  372. if (io->close_cb) {
  373. // printd("close_cb------\n");
  374. io->close_cb(io);
  375. // printd("close_cb======\n");
  376. }
  377. }
  378. void hio_set_type(hio_t* io, hio_type_e type) {
  379. io->io_type = type;
  380. }
  381. void hio_set_localaddr(hio_t* io, struct sockaddr* addr, int addrlen) {
  382. if (io->localaddr == NULL) {
  383. HV_ALLOC(io->localaddr, sizeof(sockaddr_u));
  384. }
  385. memcpy(io->localaddr, addr, addrlen);
  386. }
  387. void hio_set_peeraddr (hio_t* io, struct sockaddr* addr, int addrlen) {
  388. if (io->peeraddr == NULL) {
  389. HV_ALLOC(io->peeraddr, sizeof(sockaddr_u));
  390. }
  391. memcpy(io->peeraddr, addr, addrlen);
  392. }
  393. int hio_enable_ssl(hio_t* io) {
  394. io->io_type = HIO_TYPE_SSL;
  395. return 0;
  396. }
  397. bool hio_is_ssl(hio_t* io) {
  398. return io->io_type == HIO_TYPE_SSL;
  399. }
  400. hssl_t hio_get_ssl(hio_t* io) {
  401. return io->ssl;
  402. }
  403. hssl_ctx_t hio_get_ssl_ctx(hio_t* io) {
  404. return io->ssl_ctx;
  405. }
  406. int hio_set_ssl(hio_t* io, hssl_t ssl) {
  407. io->io_type = HIO_TYPE_SSL;
  408. io->ssl = ssl;
  409. return 0;
  410. }
  411. int hio_set_ssl_ctx(hio_t* io, hssl_ctx_t ssl_ctx) {
  412. io->io_type = HIO_TYPE_SSL;
  413. io->ssl_ctx = ssl_ctx;
  414. return 0;
  415. }
  416. int hio_new_ssl_ctx(hio_t* io, hssl_ctx_opt_t* opt) {
  417. hssl_ctx_t ssl_ctx = hssl_ctx_new(opt);
  418. if (ssl_ctx == NULL) return ERR_NEW_SSL_CTX;
  419. io->alloced_ssl_ctx = 1;
  420. return hio_set_ssl_ctx(io, ssl_ctx);
  421. }
  422. void hio_del_connect_timer(hio_t* io) {
  423. if (io->connect_timer) {
  424. htimer_del(io->connect_timer);
  425. io->connect_timer = NULL;
  426. io->connect_timeout = 0;
  427. }
  428. }
  429. void hio_del_close_timer(hio_t* io) {
  430. if (io->close_timer) {
  431. htimer_del(io->close_timer);
  432. io->close_timer = NULL;
  433. io->close_timeout = 0;
  434. }
  435. }
  436. void hio_del_read_timer(hio_t* io) {
  437. if (io->read_timer) {
  438. htimer_del(io->read_timer);
  439. io->read_timer = NULL;
  440. io->read_timeout = 0;
  441. }
  442. }
  443. void hio_del_write_timer(hio_t* io) {
  444. if (io->write_timer) {
  445. htimer_del(io->write_timer);
  446. io->write_timer = NULL;
  447. io->write_timeout = 0;
  448. }
  449. }
  450. void hio_del_keepalive_timer(hio_t* io) {
  451. if (io->keepalive_timer) {
  452. htimer_del(io->keepalive_timer);
  453. io->keepalive_timer = NULL;
  454. io->keepalive_timeout = 0;
  455. }
  456. }
  457. void hio_del_heartbeat_timer(hio_t* io) {
  458. if (io->heartbeat_timer) {
  459. htimer_del(io->heartbeat_timer);
  460. io->heartbeat_timer = NULL;
  461. io->heartbeat_interval = 0;
  462. io->heartbeat_fn = NULL;
  463. }
  464. }
  465. void hio_set_connect_timeout(hio_t* io, int timeout_ms) {
  466. io->connect_timeout = timeout_ms;
  467. }
  468. void hio_set_close_timeout(hio_t* io, int timeout_ms) {
  469. io->close_timeout = timeout_ms;
  470. }
  471. static void __read_timeout_cb(htimer_t* timer) {
  472. hio_t* io = (hio_t*)timer->privdata;
  473. uint64_t inactive_ms = (io->loop->cur_hrtime - io->last_read_hrtime) / 1000;
  474. if (inactive_ms + 100 < io->read_timeout) {
  475. ((struct htimeout_s*)io->read_timer)->timeout = io->read_timeout - inactive_ms;
  476. htimer_reset(io->read_timer);
  477. } else {
  478. char localaddrstr[SOCKADDR_STRLEN] = {0};
  479. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  480. hlogw("read timeout [%s] <=> [%s]",
  481. SOCKADDR_STR(io->localaddr, localaddrstr),
  482. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  483. io->error = ETIMEDOUT;
  484. hio_close(io);
  485. }
  486. }
  487. void hio_set_read_timeout(hio_t* io, int timeout_ms) {
  488. if (timeout_ms <= 0) {
  489. // del
  490. hio_del_read_timer(io);
  491. return;
  492. }
  493. if (io->read_timer) {
  494. // reset
  495. ((struct htimeout_s*)io->read_timer)->timeout = timeout_ms;
  496. htimer_reset(io->read_timer);
  497. } else {
  498. // add
  499. io->read_timer = htimer_add(io->loop, __read_timeout_cb, timeout_ms, 1);
  500. io->read_timer->privdata = io;
  501. }
  502. io->read_timeout = timeout_ms;
  503. }
  504. static void __write_timeout_cb(htimer_t* timer) {
  505. hio_t* io = (hio_t*)timer->privdata;
  506. uint64_t inactive_ms = (io->loop->cur_hrtime - io->last_write_hrtime) / 1000;
  507. if (inactive_ms + 100 < io->write_timeout) {
  508. ((struct htimeout_s*)io->write_timer)->timeout = io->write_timeout - inactive_ms;
  509. htimer_reset(io->write_timer);
  510. } else {
  511. char localaddrstr[SOCKADDR_STRLEN] = {0};
  512. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  513. hlogw("write timeout [%s] <=> [%s]",
  514. SOCKADDR_STR(io->localaddr, localaddrstr),
  515. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  516. io->error = ETIMEDOUT;
  517. hio_close(io);
  518. }
  519. }
  520. void hio_set_write_timeout(hio_t* io, int timeout_ms) {
  521. if (timeout_ms <= 0) {
  522. // del
  523. hio_del_write_timer(io);
  524. return;
  525. }
  526. if (io->write_timer) {
  527. // reset
  528. ((struct htimeout_s*)io->write_timer)->timeout = timeout_ms;
  529. htimer_reset(io->write_timer);
  530. } else {
  531. // add
  532. io->write_timer = htimer_add(io->loop, __write_timeout_cb, timeout_ms, 1);
  533. io->write_timer->privdata = io;
  534. }
  535. io->write_timeout = timeout_ms;
  536. }
  537. static void __keepalive_timeout_cb(htimer_t* timer) {
  538. hio_t* io = (hio_t*)timer->privdata;
  539. uint64_t last_rw_hrtime = MAX(io->last_read_hrtime, io->last_write_hrtime);
  540. uint64_t inactive_ms = (io->loop->cur_hrtime - last_rw_hrtime) / 1000;
  541. if (inactive_ms + 100 < io->keepalive_timeout) {
  542. ((struct htimeout_s*)io->keepalive_timer)->timeout = io->keepalive_timeout - inactive_ms;
  543. htimer_reset(io->keepalive_timer);
  544. } else {
  545. char localaddrstr[SOCKADDR_STRLEN] = {0};
  546. char peeraddrstr[SOCKADDR_STRLEN] = {0};
  547. hlogw("keepalive timeout [%s] <=> [%s]",
  548. SOCKADDR_STR(io->localaddr, localaddrstr),
  549. SOCKADDR_STR(io->peeraddr, peeraddrstr));
  550. io->error = ETIMEDOUT;
  551. hio_close(io);
  552. }
  553. }
  554. void hio_set_keepalive_timeout(hio_t* io, int timeout_ms) {
  555. if (timeout_ms <= 0) {
  556. // del
  557. hio_del_keepalive_timer(io);
  558. return;
  559. }
  560. if (io->keepalive_timer) {
  561. // reset
  562. ((struct htimeout_s*)io->keepalive_timer)->timeout = timeout_ms;
  563. htimer_reset(io->keepalive_timer);
  564. } else {
  565. // add
  566. io->keepalive_timer = htimer_add(io->loop, __keepalive_timeout_cb, timeout_ms, 1);
  567. io->keepalive_timer->privdata = io;
  568. }
  569. io->keepalive_timeout = timeout_ms;
  570. }
  571. static void __heartbeat_timer_cb(htimer_t* timer) {
  572. hio_t* io = (hio_t*)timer->privdata;
  573. if (io && io->heartbeat_fn) {
  574. io->heartbeat_fn(io);
  575. }
  576. }
  577. void hio_set_heartbeat(hio_t* io, int interval_ms, hio_send_heartbeat_fn fn) {
  578. if (interval_ms <= 0) {
  579. // del
  580. hio_del_heartbeat_timer(io);
  581. return;
  582. }
  583. if (io->heartbeat_timer) {
  584. // reset
  585. ((struct htimeout_s*)io->heartbeat_timer)->timeout = interval_ms;
  586. htimer_reset(io->heartbeat_timer);
  587. } else {
  588. // add
  589. io->heartbeat_timer = htimer_add(io->loop, __heartbeat_timer_cb, interval_ms, INFINITE);
  590. io->heartbeat_timer->privdata = io;
  591. }
  592. io->heartbeat_interval = interval_ms;
  593. io->heartbeat_fn = fn;
  594. }
  595. //-----------------iobuf---------------------------------------------
  596. void hio_alloc_readbuf(hio_t* io, int len) {
  597. if (len > io->max_read_bufsize) {
  598. hloge("read bufsize > %u, close it!", io->max_read_bufsize);
  599. io->error = ERR_OVER_LIMIT;
  600. hio_close_async(io);
  601. return;
  602. }
  603. if (hio_is_alloced_readbuf(io)) {
  604. io->readbuf.base = (char*)hv_realloc(io->readbuf.base, len, io->readbuf.len);
  605. } else {
  606. HV_ALLOC(io->readbuf.base, len);
  607. }
  608. io->readbuf.len = len;
  609. io->alloced_readbuf = 1;
  610. io->small_readbytes_cnt = 0;
  611. }
  612. void hio_free_readbuf(hio_t* io) {
  613. if (hio_is_alloced_readbuf(io)) {
  614. HV_FREE(io->readbuf.base);
  615. io->alloced_readbuf = 0;
  616. // reset to loop->readbuf
  617. io->readbuf.base = io->loop->readbuf.base;
  618. io->readbuf.len = io->loop->readbuf.len;
  619. }
  620. }
  621. void hio_set_readbuf(hio_t* io, void* buf, size_t len) {
  622. assert(io && buf && len != 0);
  623. hio_free_readbuf(io);
  624. io->readbuf.base = (char*)buf;
  625. io->readbuf.len = len;
  626. io->readbuf.head = io->readbuf.tail = 0;
  627. io->alloced_readbuf = 0;
  628. }
  629. hio_readbuf_t* hio_get_readbuf(hio_t* io) {
  630. return &io->readbuf;
  631. }
  632. void hio_set_max_read_bufsize (hio_t* io, uint32_t size) {
  633. io->max_read_bufsize = size;
  634. }
  635. void hio_set_max_write_bufsize(hio_t* io, uint32_t size) {
  636. io->max_write_bufsize = size;
  637. }
  638. size_t hio_write_bufsize(hio_t* io) {
  639. return io->write_bufsize;
  640. }
  641. int hio_read_once (hio_t* io) {
  642. io->read_flags |= HIO_READ_ONCE;
  643. return hio_read_start(io);
  644. }
  645. int hio_read_until_length(hio_t* io, unsigned int len) {
  646. if (len == 0) return 0;
  647. if (io->readbuf.tail - io->readbuf.head >= len) {
  648. void* buf = io->readbuf.base + io->readbuf.head;
  649. io->readbuf.head += len;
  650. if (io->readbuf.head == io->readbuf.tail) {
  651. io->readbuf.head = io->readbuf.tail = 0;
  652. }
  653. hio_read_cb(io, buf, len);
  654. return len;
  655. }
  656. io->read_flags = HIO_READ_UNTIL_LENGTH;
  657. io->read_until_length = len;
  658. // NOTE: prepare readbuf
  659. if (hio_is_loop_readbuf(io) ||
  660. io->readbuf.len < len) {
  661. hio_alloc_readbuf(io, len);
  662. }
  663. return hio_read_once(io);
  664. }
  665. int hio_read_until_delim(hio_t* io, unsigned char delim) {
  666. if (io->readbuf.tail - io->readbuf.head > 0) {
  667. const unsigned char* sp = (const unsigned char*)io->readbuf.base + io->readbuf.head;
  668. const unsigned char* ep = (const unsigned char*)io->readbuf.base + io->readbuf.tail;
  669. const unsigned char* p = sp;
  670. while (p <= ep) {
  671. if (*p == delim) {
  672. int len = p - sp + 1;
  673. io->readbuf.head += len;
  674. if (io->readbuf.head == io->readbuf.tail) {
  675. io->readbuf.head = io->readbuf.tail = 0;
  676. }
  677. hio_read_cb(io, (void*)sp, len);
  678. return len;
  679. }
  680. ++p;
  681. }
  682. }
  683. io->read_flags = HIO_READ_UNTIL_DELIM;
  684. io->read_until_length = delim;
  685. // NOTE: prepare readbuf
  686. if (hio_is_loop_readbuf(io) ||
  687. io->readbuf.len < HLOOP_READ_BUFSIZE) {
  688. hio_alloc_readbuf(io, HLOOP_READ_BUFSIZE);
  689. }
  690. return hio_read_once(io);
  691. }
  692. int hio_read_remain(hio_t* io) {
  693. int remain = io->readbuf.tail - io->readbuf.head;
  694. if (remain > 0) {
  695. void* buf = io->readbuf.base + io->readbuf.head;
  696. io->readbuf.head = io->readbuf.tail = 0;
  697. hio_read_cb(io, buf, remain);
  698. }
  699. return remain;
  700. }
  701. //-----------------unpack---------------------------------------------
  702. void hio_set_unpack(hio_t* io, unpack_setting_t* setting) {
  703. hio_unset_unpack(io);
  704. if (setting == NULL) return;
  705. io->unpack_setting = setting;
  706. if (io->unpack_setting->package_max_length == 0) {
  707. io->unpack_setting->package_max_length = DEFAULT_PACKAGE_MAX_LENGTH;
  708. }
  709. if (io->unpack_setting->mode == UNPACK_BY_FIXED_LENGTH) {
  710. assert(io->unpack_setting->fixed_length != 0 &&
  711. io->unpack_setting->fixed_length <= io->unpack_setting->package_max_length);
  712. }
  713. else if (io->unpack_setting->mode == UNPACK_BY_DELIMITER) {
  714. if (io->unpack_setting->delimiter_bytes == 0) {
  715. io->unpack_setting->delimiter_bytes = strlen((char*)io->unpack_setting->delimiter);
  716. }
  717. }
  718. else if (io->unpack_setting->mode == UNPACK_BY_LENGTH_FIELD) {
  719. assert(io->unpack_setting->body_offset >=
  720. io->unpack_setting->length_field_offset +
  721. io->unpack_setting->length_field_bytes);
  722. }
  723. // NOTE: unpack must have own readbuf
  724. if (io->unpack_setting->mode == UNPACK_BY_FIXED_LENGTH) {
  725. io->readbuf.len = io->unpack_setting->fixed_length;
  726. } else {
  727. io->readbuf.len = MIN(HLOOP_READ_BUFSIZE, io->unpack_setting->package_max_length);
  728. }
  729. io->max_read_bufsize = io->unpack_setting->package_max_length;
  730. hio_alloc_readbuf(io, io->readbuf.len);
  731. }
  732. void hio_unset_unpack(hio_t* io) {
  733. if (io->unpack_setting) {
  734. io->unpack_setting = NULL;
  735. // NOTE: unpack has own readbuf
  736. hio_free_readbuf(io);
  737. }
  738. }
  739. //-----------------upstream---------------------------------------------
  740. void hio_read_upstream(hio_t* io) {
  741. hio_t* upstream_io = io->upstream_io;
  742. if (upstream_io) {
  743. hio_read(io);
  744. hio_read(upstream_io);
  745. }
  746. }
  747. void hio_write_upstream(hio_t* io, void* buf, int bytes) {
  748. hio_t* upstream_io = io->upstream_io;
  749. if (upstream_io) {
  750. hio_write(upstream_io, buf, bytes);
  751. }
  752. }
  753. void hio_close_upstream(hio_t* io) {
  754. hio_t* upstream_io = io->upstream_io;
  755. if (upstream_io) {
  756. hio_close(upstream_io);
  757. }
  758. }
  759. void hio_setup_upstream(hio_t* io1, hio_t* io2) {
  760. io1->upstream_io = io2;
  761. io2->upstream_io = io1;
  762. }
  763. hio_t* hio_get_upstream(hio_t* io) {
  764. return io->upstream_io;
  765. }
  766. hio_t* hio_setup_tcp_upstream(hio_t* io, const char* host, int port, int ssl) {
  767. hio_t* upstream_io = hio_create_socket(io->loop, host, port, HIO_TYPE_TCP, HIO_CLIENT_SIDE);
  768. if (upstream_io == NULL) return NULL;
  769. if (ssl) hio_enable_ssl(upstream_io);
  770. hio_setup_upstream(io, upstream_io);
  771. hio_setcb_read(io, hio_write_upstream);
  772. hio_setcb_read(upstream_io, hio_write_upstream);
  773. hio_setcb_close(io, hio_close_upstream);
  774. hio_setcb_close(upstream_io, hio_close_upstream);
  775. hio_setcb_connect(upstream_io, hio_read_upstream);
  776. hio_connect(upstream_io);
  777. return upstream_io;
  778. }
  779. hio_t* hio_setup_udp_upstream(hio_t* io, const char* host, int port) {
  780. hio_t* upstream_io = hio_create_socket(io->loop, host, port, HIO_TYPE_UDP, HIO_CLIENT_SIDE);
  781. if (upstream_io == NULL) return NULL;
  782. hio_setup_upstream(io, upstream_io);
  783. hio_setcb_read(io, hio_write_upstream);
  784. hio_setcb_read(upstream_io, hio_write_upstream);
  785. hio_read_upstream(io);
  786. return upstream_io;
  787. }