hloop.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863
  1. #include "hloop.h"
  2. #include "hevent.h"
  3. #include "iowatcher.h"
  4. #include "hdef.h"
  5. #include "hbase.h"
  6. #include "hlog.h"
  7. #include "hmath.h"
  8. #include "htime.h"
  9. #include "hsocket.h"
  10. #include "hthread.h"
  11. #define HLOOP_PAUSE_TIME 10 // ms
  12. #define HLOOP_MAX_BLOCK_TIME 100 // ms
  13. #define HLOOP_STAT_TIMEOUT 60000 // ms
  14. #define IO_ARRAY_INIT_SIZE 1024
  15. #define CUSTOM_EVENT_QUEUE_INIT_SIZE 16
  16. #define SOCKPAIR_WRITE_INDEX 0
  17. #define SOCKPAIR_READ_INDEX 1
  18. static void __hidle_del(hidle_t* idle);
  19. static void __htimer_del(htimer_t* timer);
  20. static int timers_compare(const struct heap_node* lhs, const struct heap_node* rhs) {
  21. return TIMER_ENTRY(lhs)->next_timeout < TIMER_ENTRY(rhs)->next_timeout;
  22. }
  23. static int hloop_process_idles(hloop_t* loop) {
  24. int nidles = 0;
  25. struct list_node* node = loop->idles.next;
  26. hidle_t* idle = NULL;
  27. while (node != &loop->idles) {
  28. idle = IDLE_ENTRY(node);
  29. node = node->next;
  30. if (idle->repeat != INFINITE) {
  31. --idle->repeat;
  32. }
  33. if (idle->repeat == 0) {
  34. // NOTE: Just mark it as destroy and remove from list.
  35. // Real deletion occurs after hloop_process_pendings.
  36. __hidle_del(idle);
  37. }
  38. EVENT_PENDING(idle);
  39. ++nidles;
  40. }
  41. return nidles;
  42. }
  43. static int hloop_process_timers(hloop_t* loop) {
  44. int ntimers = 0;
  45. htimer_t* timer = NULL;
  46. uint64_t now_hrtime = hloop_now_hrtime(loop);
  47. while (loop->timers.root) {
  48. // NOTE: root of minheap has min timeout.
  49. timer = TIMER_ENTRY(loop->timers.root);
  50. if (timer->next_timeout > now_hrtime) {
  51. break;
  52. }
  53. if (timer->repeat != INFINITE) {
  54. --timer->repeat;
  55. }
  56. if (timer->repeat == 0) {
  57. // NOTE: Just mark it as destroy and remove from heap.
  58. // Real deletion occurs after hloop_process_pendings.
  59. __htimer_del(timer);
  60. }
  61. else {
  62. // NOTE: calc next timeout, then re-insert heap.
  63. heap_dequeue(&loop->timers);
  64. if (timer->event_type == HEVENT_TYPE_TIMEOUT) {
  65. while (timer->next_timeout <= now_hrtime) {
  66. timer->next_timeout += (uint64_t)((htimeout_t*)timer)->timeout * 1000;
  67. }
  68. }
  69. else if (timer->event_type == HEVENT_TYPE_PERIOD) {
  70. hperiod_t* period = (hperiod_t*)timer;
  71. timer->next_timeout = (uint64_t)cron_next_timeout(period->minute, period->hour, period->day,
  72. period->week, period->month) * 1000000;
  73. }
  74. heap_insert(&loop->timers, &timer->node);
  75. }
  76. EVENT_PENDING(timer);
  77. ++ntimers;
  78. }
  79. return ntimers;
  80. }
  81. static int hloop_process_ios(hloop_t* loop, int timeout) {
  82. // That is to call IO multiplexing function such as select, poll, epoll, etc.
  83. int nevents = iowatcher_poll_events(loop, timeout);
  84. if (nevents < 0) {
  85. hlogd("poll_events error=%d", -nevents);
  86. }
  87. return nevents < 0 ? 0 : nevents;
  88. }
  89. static int hloop_process_pendings(hloop_t* loop) {
  90. if (loop->npendings == 0) return 0;
  91. hevent_t* cur = NULL;
  92. hevent_t* next = NULL;
  93. int ncbs = 0;
  94. // NOTE: invoke event callback from high to low sorted by priority.
  95. for (int i = HEVENT_PRIORITY_SIZE-1; i >= 0; --i) {
  96. cur = loop->pendings[i];
  97. while (cur) {
  98. next = cur->pending_next;
  99. if (cur->pending) {
  100. if (cur->active && cur->cb) {
  101. cur->cb(cur);
  102. ++ncbs;
  103. }
  104. cur->pending = 0;
  105. // NOTE: Now we can safely delete event marked as destroy.
  106. if (cur->destroy) {
  107. EVENT_DEL(cur);
  108. }
  109. }
  110. cur = next;
  111. }
  112. loop->pendings[i] = NULL;
  113. }
  114. loop->npendings = 0;
  115. return ncbs;
  116. }
  117. // hloop_process_ios -> hloop_process_timers -> hloop_process_idles -> hloop_process_pendings
  118. static int hloop_process_events(hloop_t* loop) {
  119. // ios -> timers -> idles
  120. int nios, ntimers, nidles;
  121. nios = ntimers = nidles = 0;
  122. // calc blocktime
  123. int32_t blocktime = HLOOP_MAX_BLOCK_TIME;
  124. if (loop->timers.root) {
  125. hloop_update_time(loop);
  126. uint64_t next_min_timeout = TIMER_ENTRY(loop->timers.root)->next_timeout;
  127. int64_t blocktime_us = next_min_timeout - hloop_now_hrtime(loop);
  128. if (blocktime_us <= 0) goto process_timers;
  129. blocktime = blocktime_us / 1000;
  130. ++blocktime;
  131. blocktime = MIN(blocktime, HLOOP_MAX_BLOCK_TIME);
  132. }
  133. if (loop->nios) {
  134. nios = hloop_process_ios(loop, blocktime);
  135. } else {
  136. hv_msleep(blocktime);
  137. }
  138. hloop_update_time(loop);
  139. // wakeup by hloop_stop
  140. if (loop->status == HLOOP_STATUS_STOP) {
  141. return 0;
  142. }
  143. process_timers:
  144. if (loop->ntimers) {
  145. ntimers = hloop_process_timers(loop);
  146. }
  147. int npendings = loop->npendings;
  148. if (npendings == 0) {
  149. if (loop->nidles) {
  150. nidles= hloop_process_idles(loop);
  151. }
  152. }
  153. int ncbs = hloop_process_pendings(loop);
  154. // printd("blocktime=%d nios=%d/%u ntimers=%d/%u nidles=%d/%u nactives=%d npendings=%d ncbs=%d\n",
  155. // blocktime, nios, loop->nios, ntimers, loop->ntimers, nidles, loop->nidles,
  156. // loop->nactives, npendings, ncbs);
  157. return ncbs;
  158. }
  159. static void hloop_stat_timer_cb(htimer_t* timer) {
  160. hloop_t* loop = timer->loop;
  161. // hlog_set_level(LOG_LEVEL_DEBUG);
  162. hlogd("[loop] pid=%ld tid=%ld uptime=%lluus cnt=%llu nactives=%u nios=%u ntimers=%u nidles=%u",
  163. loop->pid, loop->tid, loop->cur_hrtime - loop->start_hrtime, loop->loop_cnt,
  164. loop->nactives, loop->nios, loop->ntimers, loop->nidles);
  165. }
  166. static void sockpair_read_cb(hio_t* io, void* buf, int readbytes) {
  167. hloop_t* loop = io->loop;
  168. hevent_t* pev = NULL;
  169. hevent_t ev;
  170. for (int i = 0; i < readbytes; ++i) {
  171. hmutex_lock(&loop->custom_events_mutex);
  172. if (event_queue_empty(&loop->custom_events)) {
  173. goto unlock;
  174. }
  175. pev = event_queue_front(&loop->custom_events);
  176. if (pev == NULL) {
  177. goto unlock;
  178. }
  179. ev = *pev;
  180. event_queue_pop_front(&loop->custom_events);
  181. // NOTE: unlock before cb, avoid deadlock if hloop_post_event called in cb.
  182. hmutex_unlock(&loop->custom_events_mutex);
  183. if (ev.cb) {
  184. ev.cb(&ev);
  185. }
  186. }
  187. return;
  188. unlock:
  189. hmutex_unlock(&loop->custom_events_mutex);
  190. }
  191. void hloop_post_event(hloop_t* loop, hevent_t* ev) {
  192. char buf = '1';
  193. if (loop->sockpair[0] == -1 || loop->sockpair[1] == -1) {
  194. hlogw("socketpair not created!");
  195. return;
  196. }
  197. if (ev->loop == NULL) {
  198. ev->loop = loop;
  199. }
  200. if (ev->event_type == 0) {
  201. ev->event_type = HEVENT_TYPE_CUSTOM;
  202. }
  203. if (ev->event_id == 0) {
  204. ev->event_id = hloop_next_event_id();
  205. }
  206. hmutex_lock(&loop->custom_events_mutex);
  207. hwrite(loop, loop->sockpair[SOCKPAIR_WRITE_INDEX], &buf, 1, NULL);
  208. event_queue_push_back(&loop->custom_events, ev);
  209. hmutex_unlock(&loop->custom_events_mutex);
  210. }
  211. static void hloop_init(hloop_t* loop) {
  212. #ifdef OS_WIN
  213. static int s_wsa_initialized = 0;
  214. if (s_wsa_initialized == 0) {
  215. s_wsa_initialized = 1;
  216. WSADATA wsadata;
  217. WSAStartup(MAKEWORD(2,2), &wsadata);
  218. }
  219. #endif
  220. #ifdef SIGPIPE
  221. // NOTE: if not ignore SIGPIPE, write twice when peer close will lead to exit process by SIGPIPE.
  222. signal(SIGPIPE, SIG_IGN);
  223. #endif
  224. loop->status = HLOOP_STATUS_STOP;
  225. loop->pid = hv_getpid();
  226. loop->tid = hv_gettid();
  227. // idles
  228. list_init(&loop->idles);
  229. // timers
  230. heap_init(&loop->timers, timers_compare);
  231. // ios
  232. io_array_init(&loop->ios, IO_ARRAY_INIT_SIZE);
  233. // readbuf
  234. loop->readbuf.len = HLOOP_READ_BUFSIZE;
  235. HV_ALLOC(loop->readbuf.base, loop->readbuf.len);
  236. // iowatcher
  237. iowatcher_init(loop);
  238. // custom_events
  239. hmutex_init(&loop->custom_events_mutex);
  240. event_queue_init(&loop->custom_events, CUSTOM_EVENT_QUEUE_INIT_SIZE);
  241. loop->sockpair[0] = loop->sockpair[1] = -1;
  242. if (Socketpair(AF_INET, SOCK_STREAM, 0, loop->sockpair) != 0) {
  243. hloge("socketpair create failed!");
  244. }
  245. // NOTE: init start_time here, because htimer_add use it.
  246. loop->start_ms = gettimeofday_ms();
  247. loop->start_hrtime = loop->cur_hrtime = gethrtime_us();
  248. }
  249. static void hloop_cleanup(hloop_t* loop) {
  250. // pendings
  251. printd("cleanup pendings...\n");
  252. for (int i = 0; i < HEVENT_PRIORITY_SIZE; ++i) {
  253. loop->pendings[i] = NULL;
  254. }
  255. // ios
  256. printd("cleanup ios...\n");
  257. for (int i = 0; i < loop->ios.maxsize; ++i) {
  258. hio_t* io = loop->ios.ptr[i];
  259. if (io) {
  260. hio_free(io);
  261. }
  262. }
  263. io_array_cleanup(&loop->ios);
  264. // idles
  265. printd("cleanup idles...\n");
  266. struct list_node* node = loop->idles.next;
  267. hidle_t* idle;
  268. while (node != &loop->idles) {
  269. idle = IDLE_ENTRY(node);
  270. node = node->next;
  271. HV_FREE(idle);
  272. }
  273. list_init(&loop->idles);
  274. // timers
  275. printd("cleanup timers...\n");
  276. htimer_t* timer;
  277. while (loop->timers.root) {
  278. timer = TIMER_ENTRY(loop->timers.root);
  279. heap_dequeue(&loop->timers);
  280. HV_FREE(timer);
  281. }
  282. heap_init(&loop->timers, NULL);
  283. // readbuf
  284. if (loop->readbuf.base && loop->readbuf.len) {
  285. HV_FREE(loop->readbuf.base);
  286. loop->readbuf.base = NULL;
  287. loop->readbuf.len = 0;
  288. }
  289. // iowatcher
  290. iowatcher_cleanup(loop);
  291. // custom_events
  292. hmutex_lock(&loop->custom_events_mutex);
  293. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  294. closesocket(loop->sockpair[0]);
  295. closesocket(loop->sockpair[1]);
  296. loop->sockpair[0] = loop->sockpair[1] = -1;
  297. }
  298. event_queue_cleanup(&loop->custom_events);
  299. hmutex_unlock(&loop->custom_events_mutex);
  300. hmutex_destroy(&loop->custom_events_mutex);
  301. }
  302. hloop_t* hloop_new(int flags) {
  303. hloop_t* loop;
  304. HV_ALLOC_SIZEOF(loop);
  305. hloop_init(loop);
  306. loop->flags |= flags;
  307. return loop;
  308. }
  309. void hloop_free(hloop_t** pp) {
  310. if (pp && *pp) {
  311. hloop_cleanup(*pp);
  312. HV_FREE(*pp);
  313. *pp = NULL;
  314. }
  315. }
  316. // while (loop->status) { hloop_process_events(loop); }
  317. int hloop_run(hloop_t* loop) {
  318. if (loop == NULL) return -1;
  319. if (loop->status == HLOOP_STATUS_RUNNING) return -2;
  320. loop->status = HLOOP_STATUS_RUNNING;
  321. loop->pid = hv_getpid();
  322. loop->tid = hv_gettid();
  323. if (loop->intern_nevents == 0) {
  324. if (loop->sockpair[0] != -1 && loop->sockpair[1] != -1) {
  325. hread(loop, loop->sockpair[SOCKPAIR_READ_INDEX], loop->readbuf.base, loop->readbuf.len, sockpair_read_cb);
  326. ++loop->intern_nevents;
  327. }
  328. #ifdef DEBUG
  329. htimer_add(loop, hloop_stat_timer_cb, HLOOP_STAT_TIMEOUT, INFINITE);
  330. ++loop->intern_nevents;
  331. #endif
  332. }
  333. while (loop->status != HLOOP_STATUS_STOP) {
  334. if (loop->status == HLOOP_STATUS_PAUSE) {
  335. hv_msleep(HLOOP_PAUSE_TIME);
  336. hloop_update_time(loop);
  337. continue;
  338. }
  339. ++loop->loop_cnt;
  340. if (loop->nactives <= loop->intern_nevents && loop->flags & HLOOP_FLAG_QUIT_WHEN_NO_ACTIVE_EVENTS) {
  341. break;
  342. }
  343. hloop_process_events(loop);
  344. if (loop->flags & HLOOP_FLAG_RUN_ONCE) {
  345. break;
  346. }
  347. }
  348. loop->status = HLOOP_STATUS_STOP;
  349. loop->end_hrtime = gethrtime_us();
  350. if (loop->flags & HLOOP_FLAG_AUTO_FREE) {
  351. hloop_cleanup(loop);
  352. HV_FREE(loop);
  353. }
  354. return 0;
  355. }
  356. int hloop_wakeup(hloop_t* loop) {
  357. hevent_t ev;
  358. memset(&ev, 0, sizeof(ev));
  359. hloop_post_event(loop, &ev);
  360. return 0;
  361. }
  362. static void hloop_stop_event_cb(hevent_t* ev) {
  363. ev->loop->status = HLOOP_STATUS_STOP;
  364. }
  365. int hloop_stop(hloop_t* loop) {
  366. loop->status = HLOOP_STATUS_STOP;
  367. if (hv_gettid() != loop->tid) {
  368. hevent_t ev;
  369. memset(&ev, 0, sizeof(ev));
  370. ev.priority = HEVENT_HIGHEST_PRIORITY;
  371. ev.cb = hloop_stop_event_cb;
  372. hloop_post_event(loop, &ev);
  373. }
  374. return 0;
  375. }
  376. int hloop_pause(hloop_t* loop) {
  377. if (loop->status == HLOOP_STATUS_RUNNING) {
  378. loop->status = HLOOP_STATUS_PAUSE;
  379. }
  380. return 0;
  381. }
  382. int hloop_resume(hloop_t* loop) {
  383. if (loop->status == HLOOP_STATUS_PAUSE) {
  384. loop->status = HLOOP_STATUS_RUNNING;
  385. }
  386. return 0;
  387. }
  388. hloop_status_e hloop_status(hloop_t* loop) {
  389. return loop->status;
  390. }
  391. void hloop_update_time(hloop_t* loop) {
  392. loop->cur_hrtime = gethrtime_us();
  393. if (ABS((int64_t)hloop_now(loop) - (int64_t)time(NULL)) > 1) {
  394. // systemtime changed, we adjust start_ms
  395. loop->start_ms = gettimeofday_ms() - (loop->cur_hrtime - loop->start_hrtime) / 1000;
  396. }
  397. }
  398. uint64_t hloop_now(hloop_t* loop) {
  399. return loop->start_ms / 1000 + (loop->cur_hrtime - loop->start_hrtime) / 1000000;
  400. }
  401. uint64_t hloop_now_ms(hloop_t* loop) {
  402. return loop->start_ms + (loop->cur_hrtime - loop->start_hrtime) / 1000;
  403. }
  404. uint64_t hloop_now_hrtime(hloop_t* loop) {
  405. return loop->start_ms * 1000 + (loop->cur_hrtime - loop->start_hrtime);
  406. }
  407. long hloop_pid(hloop_t* loop) {
  408. return loop->pid;
  409. }
  410. long hloop_tid(hloop_t* loop) {
  411. return loop->tid;
  412. }
  413. void hloop_set_userdata(hloop_t* loop, void* userdata) {
  414. loop->userdata = userdata;
  415. }
  416. void* hloop_userdata(hloop_t* loop) {
  417. return loop->userdata;
  418. }
  419. hidle_t* hidle_add(hloop_t* loop, hidle_cb cb, uint32_t repeat) {
  420. hidle_t* idle;
  421. HV_ALLOC_SIZEOF(idle);
  422. idle->event_type = HEVENT_TYPE_IDLE;
  423. idle->priority = HEVENT_LOWEST_PRIORITY;
  424. idle->repeat = repeat;
  425. list_add(&idle->node, &loop->idles);
  426. EVENT_ADD(loop, idle, cb);
  427. loop->nidles++;
  428. return idle;
  429. }
  430. static void __hidle_del(hidle_t* idle) {
  431. if (idle->destroy) return;
  432. idle->destroy = 1;
  433. list_del(&idle->node);
  434. idle->loop->nidles--;
  435. }
  436. void hidle_del(hidle_t* idle) {
  437. if (!idle->active) return;
  438. __hidle_del(idle);
  439. EVENT_DEL(idle);
  440. }
  441. htimer_t* htimer_add(hloop_t* loop, htimer_cb cb, uint32_t timeout, uint32_t repeat) {
  442. if (timeout == 0) return NULL;
  443. htimeout_t* timer;
  444. HV_ALLOC_SIZEOF(timer);
  445. timer->event_type = HEVENT_TYPE_TIMEOUT;
  446. timer->priority = HEVENT_HIGHEST_PRIORITY;
  447. timer->repeat = repeat;
  448. timer->timeout = timeout;
  449. hloop_update_time(loop);
  450. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout*1000;
  451. // NOTE: Limit granularity to 100ms
  452. if (timeout >= 1000 && timeout % 100 == 0) {
  453. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  454. }
  455. heap_insert(&loop->timers, &timer->node);
  456. EVENT_ADD(loop, timer, cb);
  457. loop->ntimers++;
  458. return (htimer_t*)timer;
  459. }
  460. void htimer_reset(htimer_t* timer) {
  461. if (timer->event_type != HEVENT_TYPE_TIMEOUT) {
  462. return;
  463. }
  464. hloop_t* loop = timer->loop;
  465. htimeout_t* timeout = (htimeout_t*)timer;
  466. if (timer->destroy) {
  467. loop->ntimers++;
  468. } else {
  469. heap_remove(&loop->timers, &timer->node);
  470. }
  471. if (timer->repeat == 0) {
  472. timer->repeat = 1;
  473. }
  474. timer->next_timeout = hloop_now_hrtime(loop) + (uint64_t)timeout->timeout*1000;
  475. // NOTE: Limit granularity to 100ms
  476. if (timeout->timeout >= 1000 && timeout->timeout % 100 == 0) {
  477. timer->next_timeout = timer->next_timeout / 100000 * 100000;
  478. }
  479. heap_insert(&loop->timers, &timer->node);
  480. EVENT_RESET(timer);
  481. }
  482. htimer_t* htimer_add_period(hloop_t* loop, htimer_cb cb,
  483. int8_t minute, int8_t hour, int8_t day,
  484. int8_t week, int8_t month, uint32_t repeat) {
  485. if (minute > 59 || hour > 23 || day > 31 || week > 6 || month > 12) {
  486. return NULL;
  487. }
  488. hperiod_t* timer;
  489. HV_ALLOC_SIZEOF(timer);
  490. timer->event_type = HEVENT_TYPE_PERIOD;
  491. timer->priority = HEVENT_HIGH_PRIORITY;
  492. timer->repeat = repeat;
  493. timer->minute = minute;
  494. timer->hour = hour;
  495. timer->day = day;
  496. timer->month = month;
  497. timer->week = week;
  498. timer->next_timeout = (uint64_t)cron_next_timeout(minute, hour, day, week, month) * 1000000;
  499. heap_insert(&loop->timers, &timer->node);
  500. EVENT_ADD(loop, timer, cb);
  501. loop->ntimers++;
  502. return (htimer_t*)timer;
  503. }
  504. static void __htimer_del(htimer_t* timer) {
  505. if (timer->destroy) return;
  506. heap_remove(&timer->loop->timers, &timer->node);
  507. timer->loop->ntimers--;
  508. timer->destroy = 1;
  509. }
  510. void htimer_del(htimer_t* timer) {
  511. if (!timer->active) return;
  512. __htimer_del(timer);
  513. EVENT_DEL(timer);
  514. }
  515. const char* hio_engine() {
  516. #ifdef EVENT_SELECT
  517. return "select";
  518. #elif defined(EVENT_POLL)
  519. return "poll";
  520. #elif defined(EVENT_EPOLL)
  521. return "epoll";
  522. #elif defined(EVENT_KQUEUE)
  523. return "kqueue";
  524. #elif defined(EVENT_IOCP)
  525. return "iocp";
  526. #elif defined(EVENT_PORT)
  527. return "evport";
  528. #else
  529. return "noevent";
  530. #endif
  531. }
  532. hio_t* hio_get(hloop_t* loop, int fd) {
  533. if (fd >= loop->ios.maxsize) {
  534. int newsize = ceil2e(fd);
  535. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  536. }
  537. hio_t* io = loop->ios.ptr[fd];
  538. if (io == NULL) {
  539. HV_ALLOC_SIZEOF(io);
  540. hio_init(io);
  541. io->event_type = HEVENT_TYPE_IO;
  542. io->loop = loop;
  543. io->fd = fd;
  544. loop->ios.ptr[fd] = io;
  545. }
  546. if (!io->ready) {
  547. hio_ready(io);
  548. }
  549. return io;
  550. }
  551. void hio_detach(hio_t* io) {
  552. hloop_t* loop = io->loop;
  553. int fd = io->fd;
  554. assert(loop != NULL && fd < loop->ios.maxsize);
  555. loop->ios.ptr[fd] = NULL;
  556. }
  557. void hio_attach(hloop_t* loop, hio_t* io) {
  558. int fd = io->fd;
  559. if (fd >= loop->ios.maxsize) {
  560. int newsize = ceil2e(fd);
  561. io_array_resize(&loop->ios, newsize > fd ? newsize : 2*fd);
  562. }
  563. if (loop->ios.ptr[fd] == NULL) {
  564. io->loop = loop;
  565. // NOTE: use new_loop readbuf
  566. io->readbuf.base = loop->readbuf.base;
  567. io->readbuf.len = loop->readbuf.len;
  568. loop->ios.ptr[fd] = io;
  569. }
  570. }
  571. int hio_add(hio_t* io, hio_cb cb, int events) {
  572. printd("hio_add fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  573. #ifdef OS_WIN
  574. // Windows iowatcher not work on stdio
  575. if (io->fd < 3) return -1;
  576. #endif
  577. hloop_t* loop = io->loop;
  578. if (!io->active) {
  579. EVENT_ADD(loop, io, cb);
  580. loop->nios++;
  581. }
  582. if (!io->ready) {
  583. hio_ready(io);
  584. }
  585. if (cb) {
  586. io->cb = (hevent_cb)cb;
  587. }
  588. if (!(io->events & events)) {
  589. iowatcher_add_event(loop, io->fd, events);
  590. io->events |= events;
  591. }
  592. return 0;
  593. }
  594. int hio_del(hio_t* io, int events) {
  595. printd("hio_del fd=%d io->events=%d events=%d\n", io->fd, io->events, events);
  596. #ifdef OS_WIN
  597. // Windows iowatcher not work on stdio
  598. if (io->fd < 3) return -1;
  599. #endif
  600. if (!io->active) return -1;
  601. if (io->events & events) {
  602. iowatcher_del_event(io->loop, io->fd, events);
  603. io->events &= ~events;
  604. }
  605. if (io->events == 0) {
  606. io->loop->nios--;
  607. // NOTE: not EVENT_DEL, avoid free
  608. EVENT_INACTIVE(io);
  609. }
  610. return 0;
  611. }
  612. static void hio_close_event_cb(hevent_t* ev) {
  613. hio_t* io = (hio_t*)ev->userdata;
  614. uint32_t id = (uintptr_t)ev->privdata;
  615. if (io->id != id) return;
  616. hio_close(io);
  617. }
  618. int hio_close_async(hio_t* io) {
  619. hevent_t ev;
  620. memset(&ev, 0, sizeof(ev));
  621. ev.cb = hio_close_event_cb;
  622. ev.userdata = io;
  623. ev.privdata = (void*)(uintptr_t)io->id;
  624. ev.priority = HEVENT_HIGH_PRIORITY;
  625. hloop_post_event(io->loop, &ev);
  626. return 0;
  627. }
  628. //------------------high-level apis-------------------------------------------
  629. hio_t* hread(hloop_t* loop, int fd, void* buf, size_t len, hread_cb read_cb) {
  630. hio_t* io = hio_get(loop, fd);
  631. assert(io != NULL);
  632. if (buf && len) {
  633. io->readbuf.base = (char*)buf;
  634. io->readbuf.len = len;
  635. }
  636. if (read_cb) {
  637. io->read_cb = read_cb;
  638. }
  639. hio_read(io);
  640. return io;
  641. }
  642. hio_t* hwrite(hloop_t* loop, int fd, const void* buf, size_t len, hwrite_cb write_cb) {
  643. hio_t* io = hio_get(loop, fd);
  644. assert(io != NULL);
  645. if (write_cb) {
  646. io->write_cb = write_cb;
  647. }
  648. hio_write(io, buf, len);
  649. return io;
  650. }
  651. hio_t* haccept(hloop_t* loop, int listenfd, haccept_cb accept_cb) {
  652. hio_t* io = hio_get(loop, listenfd);
  653. assert(io != NULL);
  654. if (accept_cb) {
  655. io->accept_cb = accept_cb;
  656. }
  657. hio_accept(io);
  658. return io;
  659. }
  660. hio_t* hconnect (hloop_t* loop, int connfd, hconnect_cb connect_cb) {
  661. hio_t* io = hio_get(loop, connfd);
  662. assert(io != NULL);
  663. if (connect_cb) {
  664. io->connect_cb = connect_cb;
  665. }
  666. hio_connect(io);
  667. return io;
  668. }
  669. void hclose (hloop_t* loop, int fd) {
  670. hio_t* io = hio_get(loop, fd);
  671. assert(io != NULL);
  672. hio_close(io);
  673. }
  674. hio_t* hrecv (hloop_t* loop, int connfd, void* buf, size_t len, hread_cb read_cb) {
  675. //hio_t* io = hio_get(loop, connfd);
  676. //assert(io != NULL);
  677. //io->recv = 1;
  678. //if (io->io_type != HIO_TYPE_SSL) {
  679. //io->io_type = HIO_TYPE_TCP;
  680. //}
  681. return hread(loop, connfd, buf, len, read_cb);
  682. }
  683. hio_t* hsend (hloop_t* loop, int connfd, const void* buf, size_t len, hwrite_cb write_cb) {
  684. //hio_t* io = hio_get(loop, connfd);
  685. //assert(io != NULL);
  686. //io->send = 1;
  687. //if (io->io_type != HIO_TYPE_SSL) {
  688. //io->io_type = HIO_TYPE_TCP;
  689. //}
  690. return hwrite(loop, connfd, buf, len, write_cb);
  691. }
  692. hio_t* hrecvfrom (hloop_t* loop, int sockfd, void* buf, size_t len, hread_cb read_cb) {
  693. //hio_t* io = hio_get(loop, sockfd);
  694. //assert(io != NULL);
  695. //io->recvfrom = 1;
  696. //io->io_type = HIO_TYPE_UDP;
  697. return hread(loop, sockfd, buf, len, read_cb);
  698. }
  699. hio_t* hsendto (hloop_t* loop, int sockfd, const void* buf, size_t len, hwrite_cb write_cb) {
  700. //hio_t* io = hio_get(loop, sockfd);
  701. //assert(io != NULL);
  702. //io->sendto = 1;
  703. //io->io_type = HIO_TYPE_UDP;
  704. return hwrite(loop, sockfd, buf, len, write_cb);
  705. }
  706. //-----------------top-level apis---------------------------------------------
  707. hio_t* hio_create(hloop_t* loop, const char* host, int port, int type) {
  708. sockaddr_u peeraddr;
  709. memset(&peeraddr, 0, sizeof(peeraddr));
  710. int ret = sockaddr_set_ipport(&peeraddr, host, port);
  711. if (ret != 0) {
  712. //printf("unknown host: %s\n", host);
  713. return NULL;
  714. }
  715. int connfd = socket(peeraddr.sa.sa_family, type, 0);
  716. if (connfd < 0) {
  717. perror("socket");
  718. return NULL;
  719. }
  720. hio_t* io = hio_get(loop, connfd);
  721. assert(io != NULL);
  722. hio_set_peeraddr(io, &peeraddr.sa, sockaddr_len(&peeraddr));
  723. return io;
  724. }
  725. hio_t* hloop_create_tcp_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  726. int listenfd = Listen(port, host);
  727. if (listenfd < 0) {
  728. return NULL;
  729. }
  730. hio_t* io = haccept(loop, listenfd, accept_cb);
  731. if (io == NULL) {
  732. closesocket(listenfd);
  733. }
  734. return io;
  735. }
  736. hio_t* hloop_create_tcp_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  737. hio_t* io = hio_create(loop, host, port, SOCK_STREAM);
  738. if (io == NULL) return NULL;
  739. hconnect(loop, io->fd, connect_cb);
  740. return io;
  741. }
  742. hio_t* hloop_create_ssl_server (hloop_t* loop, const char* host, int port, haccept_cb accept_cb) {
  743. hio_t* io = hloop_create_tcp_server(loop, host, port, accept_cb);
  744. if (io == NULL) return NULL;
  745. hio_enable_ssl(io);
  746. return io;
  747. }
  748. hio_t* hloop_create_ssl_client (hloop_t* loop, const char* host, int port, hconnect_cb connect_cb) {
  749. hio_t* io = hio_create(loop, host, port, SOCK_STREAM);
  750. if (io == NULL) return NULL;
  751. hio_enable_ssl(io);
  752. hconnect(loop, io->fd, connect_cb);
  753. return io;
  754. }
  755. hio_t* hloop_create_udp_server(hloop_t* loop, const char* host, int port) {
  756. int bindfd = Bind(port, host, SOCK_DGRAM);
  757. if (bindfd < 0) {
  758. return NULL;
  759. }
  760. return hio_get(loop, bindfd);
  761. }
  762. hio_t* hloop_create_udp_client(hloop_t* loop, const char* host, int port) {
  763. return hio_create(loop, host, port, SOCK_DGRAM);
  764. }